
LIST OF PROBLEMS

Hisao Yoshihara1 and Satoru Fukasawa2

We follow the notation in the page of open questions. For a survey of Galois points and
related topics, see [18]. In what follows, comments and references are given in italics between
– and –.

I CHARACTERISTIC ZERO CASE

(A) Curve Case

(1) Galois points and Galois groups for plane curves C

(a) Find Galois points and the Galois groups for singular plane curves.
– for smooth curves, the number of Galois points is at most three (resp. four) if
they are outer (resp. inner). The Galois groups are cyclic. [78, 95] –

(i) How is the structure of Galois group and how many Galois points do there
exist? Is it true that the maximal number of outer (resp. inner) Galois points
is three (resp. four)?
– for rational curves [73, 101, 102, 105], for elliptic curves [63], for curves of
prime degree [12], for non-immersed curves [30] –

(ii) Study the property of singularity when C has a Galois point. In particular,
if a singular point is also Galois, how is the property of the singularity? Find
the characterization of the curve with the maximal number of Galois points.
– for lower degree or rational curves [69, 70, 71, 89, 101, 102, 105], for two
Galois points [57] –

(iii) Does there exist a curve with three Galois points such that their groups are
not isomorphic to one another? More generally, consider the set

{ GP | P ∈ P2 is a Galois point for C} (mod isomorphism).

– [31, 64, 91] –
(iv) If C has a Galois point and its dual curve has one, what is the curve? Is it a

self-dual curve?
– [44, 45] –

(b) Each element of G induces a birational transformation of C over P1. When is it
extendable to a projective or birational transformation of P2?
– for rational curves, [73, 103] –
– for relevant results, [72, 74, 75, 77] –
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(c) Determine the group generated by { σ | σ ∈ GP , P is a Galois point} in the group
of birational transformations of C.
– for a smooth curve and surface cases, [76] and [62], respectively –
– the group generated by GP1 and GP2 is determined (in arbitrary characteristic),
under the assumption that Pi is inner Galois and GPi

fixes Pi for i = 1, 2 [68] –
– application to Aut(C) [55] –

(d) Classify plane curves in terms of the structure of the group generated by GP1 and
GP2 , if P1 and P2 are Galois points.
– for the case where GP1GP2 = GP1 ⋊GP2, [37, 48] –
– for the case where Pi is inner Galois and GPi

fixes Pi for i = 1, 2, [68] –

(2) Non-Galois points for plane curves C

(a) Find the curve C with the constant Galois groups, i.e., for any P ∈ P2 the Galois
group is the full symmetric group, in other words, if P /∈ C (resp. P ∈ C), then
GP

∼= Sd (resp. GP
∼= Sd−1).

– If P is a general point for C, then the Galois group at P is the full symmetric
group of degree d (resp. d− 1) if it is outer (resp. inner). [10, 54, 95] –

(b) Find a geometrical condition that GP is primitive, i.e., the condition be given by

the covering π̃P : C̃ −→ P1, where C̃ is the normalization of C.
– for rational curves, [56] –

(c) Study these subjects in the remaining cases, i.e., the case where P is neither general
nor Galois.

(i) Find the Galois group and the Galois closure curve for C at P , in particular
the genus g(P ) of the Galois closure curve.
– for quartic curves, [78, 94] –

(ii) Determine the set
G(C) = { g(P ) | P ∈ C } for a fixed smooth curve C.
In particular, determine G(Fd), where Fd is the Fermat curve of degree d.
Fixing d, determine the set
G(d) = { g(P ) | C is a smooth curve of degree d and P ∈ C}.
– for quartic curves, [94] –

(iii) Find the number of points at which the Galois groups are isomorphic to a
fixed group. In particular, in the case where the group is an alternating
group.
– for quintic curves [92], for dual curves of cubic curves [45]–
– for relevant results [2, 8] –

(iv) Study the above in detail for special curves. For example, let Fd be the
Fermat curve of degree d ≥ 5. Suppose d− 1 is not a prime number. Then,
how is the Galois group at the flex?
– [79, 95] –

(3) Deformations of Galois closure curves
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(a) For a smooth curve C consider the set { CP | P ∈ C }, where CP is the Galois
closure curve with respect to the projection πP : C −→ P1.

(i) There exists a smooth projective surface S and a morphism φ : S −→ C
satisfying that φ−1(P ) ∼= CP , where P is a general point of C. Study the
structure of S and the singular fiber of φ.
– [85, 86, 98] –

(ii) If a point P ′ is close to another one P , then are the Galois closure curves CP ′

and CP not isomorphic to each other?
– [83, 85, 98] –

(b) Similarly, for a smooth curve C, consider the set { CP | P ∈ P2 }. There exists
a smooth projective threefold M and a morphism ψ : M −→ P2 satisfying that
ψ−1(Q) ∼= CQ, where Q is a general point of P2 \C. Study the structure of M and
the singular fiber of ψ.
– [84] –

(4) Space curves

Study the same subjects for space curves. In particular, study the following:
(a) curves in P3

(i) Find Galois lines ℓ for C in two cases where C ∩ ℓ = ∅ and C ∩ ℓ ̸= ∅. In
particular, find the arrangement of Galois lines.
– for quartic curves, [13, 64, 106] –

(ii) Some space curve with a Galois line is obtained as a Galois closure curve of
a plane curve. Characterize such a space curve.
– [99] –

(iii) Suppose C is a curve in P3 which is a complete intersection of two surfaces of
degrees d1 and d2. Then, find the Galois lines and Galois groups. Does there
exist any relation with the hypersurfaces?
– for d1 = d2 = 2, [106] –

(b) curves in Pn

(i) Find the arrangement of Galois subspaces.
– A general result is obtained in [5] –

(ii) Study the Galois subspaces and Galois groups for a rational normal curve C.
In particular, find the Grassmannian of the Galois subspaces.
– This problem was solved in [4] –

(iii) Study the Galois group when the subspace is not Galois.

(B) Surface and Hypersurface Cases

Study the same subjects for hypersurfaces. In particular, study the following:

(1) Galois points and Galois groups
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(a) Find the Galois points and Galois groups for hypersurfaces with singularities.
– for smooth hypersurfaces [96, 97], for normal quartic surfaces [88], for normal
hypersurfaces [49]. It is proved that for any hypersurface (which is not a cone), the
number of outer Galois points is finite [9] –

(b) Characterize the hypersurface with the maximal number of inner Galois points.
Does it has a special property?
– quartic surfaces have some special property, [62, 96] –

(2) Non-Galois points
(a) When P is not a Galois point, consider the Galois closure surface.

– for the definition of LW -normalization, see [93] –
– In many cases the Galois closure surfaces are of general type. So, we have an
interest in the case where they are not of general type. [87] –

(C) Higher Dimensional Case and Galois Embedding

Study the same subjects for projective varieties V in PN . In order to treat the most general
case, we should consider smooth varieties which are not necessarily in the projective space, so
we consider the Galois embeddings.

– [100] –

(1) Study the Grassmannian

{ W ∈ G(N − n− 1, N) | GW is isomorphic to a full symmetric group }.
In particular, is it true that the codimension of the complement of the set is at least
two ?
– [9, 11, 81] –

(2) Suppose dimLin(V ) = 0�, W is close to W ′ (in the Grassmannian) and W ̸= W ′. Let
LW be the Galois closure of the extension determined by the projection. Then, is it
true that LW is not isomorphic to LW ′ ?

(3) For an embedding (V,D) find the structure of Galois group GW for eachW ∈ G(N−n−
1, N). In particular, let A be a principally polarized abelian variety with the polarization
Θ. Then study the structure of A and the Galois group when (A, 3Θ) gives a Galois
embedding.
– for an elliptic curve, the j-invariant is zero –

(4) Find the structure of abelian variety if it possesses a Galois embedding.
– it is isogenous to the self product of an elliptic curve, [3, 100] –

(5) Find the complex representation of the Galois group of abelian variety if it possesses a
Galois embedding.
– for abelian surfaces, [100] –

(6) For each nonsingular projective algebraic variety V , consider whether it possesses a
Galois embedding.

�Denote by Lin(V ) the subgroup of Aut(V ) consisting of elements induced by the projective transformations
of the ambient space which leave V invariant.
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– for self products of smooth curves, [3] –
(7) Find all the Galois subspaces for one Galois embedding, or find the arrangements of

Galois subspaces. Suppose the Kodaira dimension of V is non-negative. Then, is it true
that the number of Galois subspaces is finitely many?
– [99] –

(8) For the surface with Kodaira dimension ≤ 0, consider the Galois embeddings, the Galois
subspaces and the Galois groups.
– [100, 104, 108, 111] –
– bielliptic surfaces have no Galois embeddings [109] –

(9) Some projective variety with a Galois subspace is obtained as a Galois closure variety
of another projective variety. Characterize such a variety.
– [110] –

(10) For each finite subgroup G of GL(2, k), does there exist a pair (V,D) which defines
the Galois embedding with the Galois group G such that Dn = |G|, dim V = n and
dimH0(V, O(D)) = n+ 3?
– [110] –

(11) Consider the similar subjects in the case where f(V ) ∩W ̸= ∅.

(D) Related Topics

(1) Let k(x, y) be an algebraic function field of one variable over k. Suppose k(x, y)/k(x)
is a Galois extension and σ a Galois automorphism. Then, how can we express σ(y) as
an element of k(x, y)?
– this may have some relation with the singularity of the curve defining k(x, y), [107] –

(2) In case the curve C is defined over Q, can we develop the similar research? How is the
Galois group at rational points? If the “degree of a point” becomes large, then how
does the Galois group at the point become? Suppose C has good reduction Cp modulo
p. Then, compare the Galois groups at the points in C and Cp.
– Theorem 3 in [95] –

(3) When an irreducible curve C exists in a ruled surface S, consider the projection π :
S −→ ∆, where ∆ is a base curve. Suppose C is not a fiber of π. Then, restricting π
to C, we get an extension of function fields k(C)/π∗k(∆). Do the similar research for
this case as in the plane curve case. If C is smooth and π|C a Galois cover, then is the
Galois group cyclic?
– Yes, for the Hirzebruch surface S = Σn (n ≥ 1), see for the details and other results,
[90] –

(4) Study the same subject as above in a weighted projective space, i.e., consider a weighted
projective variety, projection and function field . . .

(5) Extend the study of Galois points to that of “quasi-Galois points”.
– [46, 47] –

(6) Study the relations between Galois points and weak Galois Weierstrass points.
– [66, 67] –
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II POSITIVE CHARACTERISTIC CASE

(A) Throughout the case where p > 0: Generalize results obtained in the case where p = 0
to arbitrary characteristic p ≥ 0.

– We have not checked yet whether a lot of results on Galois points obtained in the case where
p = 0 hold also in p > 0. Therefore, almost all problems in I are open also in this case. –

(B) Curve Case

(1) Galois points and Galois groups for plane curves C
(a) Find Galois points and the Galois groups for singular plane curves.

– for smooth curves, the number of Galois points and the Galois groups were de-
termined. [14, 15, 16, 19, 21, 22, 59] –

(i) Find new examples of plane curves having many Galois points. Determine
the Galois groups for such curves.
– see tables in III –

(ii) Give an upper bound for the number of Galois points if the number is finite,
and characterize curves attaining the bound. If the number of outer Galois
points is finite and at least (d− 1)4− (d− 1)3+(d− 1)2, then is such a curve
Hermitian? What is the next upper bound?
– for inner Galois points, the upper bound is (d− 1)3 + 1 [23, 27] –

(iii) Find new examples of curves admitting non-collinear Galois points. Is it
true that rational, elliptic, Fermat, Hermitian and Dickson–Guralnick–Zieve
curves are all (smooth models of) curves admitting non-collinear Galois points?

(iv) Classify curves admitting non-collinear Galois points. Is it true that if there
exist non-collinear outer Galois points P1, P2 and P3 and points Q1, Q2 and
Q3 ∈ C such that PiPj ∋ Qk and ⟨GPi

, GPj
⟩Qk = Qk for any i, j, k with

{i, j, k} = {1, 2, 3}, then (the smooth model of) C is rational or the Hermitian
curve?
– cf. [33] –

(v) Find Galois points and Galois groups for special curves in positive character-
istic. For example, when C is a non-reflexive or strange curve.
– see [61, 65] for definition. for a non-reflexive curve of low degree [20] –

(vi) Find Galois points and the Galois groups for singular curves of lower genera.
For rational curves not defined by x − yq = 0, is it true that the number of
inner (smooth) Galois points is at most d?
– Even if the genus (of the smooth model ) is 0 or 1, this problem is still open
in the case where p > 0. –

(vii) Classify plane curves with many singular points which are Galois. Is there
a plane curve of genus g such that the number of such Galois points is (d −
1)(d− 2)/2− g?
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– Such a rational curve exists [20]. The (q3, q2)-Frobenius nonclassical curve
has many singular points which are Galois [6]. –

(b) A birational embedding of an algebraic curve X into P2 with two or more Galois
points (C is the image of the embedding of X)

(i) Find a criterion for the existence of a birational embedding with three collinear
Galois points.
– for a birational embedding with two Galois points [31], for a birational em-
bedding with non-collinear Galois points [33]. One version for three collinear
Galois points is proposed in [34]. –

(ii) For the genus g ≥ 2, determine a function f(g) such that if a curve X has an
automorphism group G with |G| ≥ f(g) then X has a birational embedding
with (two) Galois points.
– This is similar to a problem posed in [52]. Compared to [32, 39, 59], it follows
from Stichtenoth–Henn’s classification [58, Theorem 11.127] that f(g) ≤ 8g3.
–

(iii) Describe the full automorphism group Aut(X) of an algebraic curve X pos-
sessing a birational embedding into P2 with (two or more) Galois points.
– cf. [1, 7, 36, 68, 80] –

(iv) Determine all birational embeddings with two (or more) Galois points when
X is fixed. How about the Hermitian curve?
– The Hermitian curve has three kinds of such embeddings [32, 33, 59]. –

(2) Non-Galois points for plane curves C
– In positive characteristic, the Galois group GP at a general point P ∈ P2 \ C (resp.
P ∈ C) is not always the full symmetric group, even if C is smooth. [60] –
(a) If C is reflexive, is the Galois group GP at a general point P ∈ P2\C (resp. P ∈ C)

the full symmetric group?
– cf. [81, 82] –

(b) If C is non-reflexive, what kind of group appears as the Galois group GP at a
general point P ∈ P2 \ C (resp. P ∈ C)? What is the genus g(P ) of CP ?

(c) Classify curves C with two points P1 and P2 ∈ P2 such that LP1 = LP2 , or the
Galois closure curves.
– Such curves are studied in [42]. –

(3) Space curves
Describe the arrangement of Galois lines for curves in P3. How about special curves in
positive characteristic?

– for the Giulietti–Korchmáros curve [40], for the Artin–Schreier–Mumford curve and
generalized curves [35, 36] –

(4) Study the relations between Galois points and other subjects of research.
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(a) Study birational embeddings of maximal curves, which attain the Hasse–Weil bound,
into P2 with Galois points.
– [32, 39, 40, 41] –

(b) Do there exist any relations between Galois points and the p-rank of C? Find
Galois points for curves with p-rank zero.
– [7, 26] –

(c) Study the relations between Galois points and rational points when C is defined
over a finite field. If the set of Galois points coincides with that of rational points
of P2 (over a finite field), is it true that the curve C is the Hermitian, Ballico–Hefez
or the (qn, qm)-Frobenius nonclassical curve of type (n,m) = (3, 1) or (3, 2)? Or,
more basically, is C Frobenius nonclassical?
– [6, 19, 20, 28, 59] –

(d) Is there an application to Coding theory? Find a curve C defined over a finite field
whose Galois points are rational, and study algebraic-geometric codes from C with
such points.
– cf. [43] –

(e) Study the relations between Galois points and complete arcs arising from (Frobenius
nonclassical) plane curves.
– see [53] for the definition of complete arcs arising from plane curves. for a certain
abelian p-cover of the Hermitian curve, [7] –

(f) Is there an application to Cryptography?
(g) Is there an application to Group theory?

– [50] –

(C) Hypersurface Case

(1) Find Galois points for smooth or normal hypersurfaces.
– The Galois groups at Galois points have been determined [49]. For the Fermat hyper-
surface of degree pe + 1, the distribution of Galois points is determined. –

(2) Classify hypersurfaces with infinitely many Galois points.
– for the case where the dimension of the set of Galois points is equal to that of the
hypersurface [24] –

(3) Find new examples of hypersurfaces having many Galois points. Determine the Galois
groups for such hypersurfaces.

(4) Find Galois points and the Galois groups for special hypersurfaces in positive charac-
teristic. For example, non-reflexive or strange hypersurfaces.
– The Fermat hypersurface of degree pe+1 has many Galois points and is non-reflexive.
–

(5) Study the relations between Galois points and rational points for a hypersurface.

(D) Higher Dimensional Case
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(1) Classify projective varieties with infinitely many Galois subspaces.
(2) Find Galois subspaces and the Galois groups for special varieties in positive character-

istic. For example, non-reflexive or strange varieties.
– The studies of non-reflexivity from a certain viewpoint are discussed in [61]. –

(3) Study the relations between Galois subspaces and rational points for a projective variety.

III APPENDIX: Tables of plane curves with two or more Galois points
(Update 19 April, 2021 for δ′(C); 26 February, 2019 for δ(C))

We denote by δ′(C) (resp. δ(C)) the number of Galois points which is contained in P2 \ C
(resp. C \ Sing(C)). If the characteristic p is positive, then we assume that q is a power of p.

Summarizing results obtained by several authors by now, we make tables of plane curves with
δ′(C) ≥ 2 and with δ(C) ≥ 2. In the tables, “groups” mean groups appearing as Galois groups
at Galois points and “elem. p” means an “elementary abelian p-group (Z/pZ)⊕e”. (Remark,
(*1)(*2): There exist families of curves with δ′(C) ≥ 2 to which these curves belong ([21, 25]).)
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δ′(C) p d curve groups ref.

(1) ∞ > 0 pe
∑e

i=0(αix
pi + βiy

pi) = 0 elem. p [38, 17]
(2) q4 − q3 + q2 > 0 q + 1 Fermat curve cyclic [59]
(3) q(q + 1)/2 > 0 q + 1 (1 : (1 + t)q+1 : tq+1) cyclic [20]
(4) q + 1 (xq − x)2 + (xq − x)(yq − y) (Z/pZ)⊕e

or > 0 2q +λ(yq − y)2 + µ = 0 (*1) ⋊ [21, 25]
q − 1 (λ ∈ Fq, (q, λ, µ) ̸= (2, 1, 1)) Z/2Z

(5) q2 + q + 1 > 0 q3 − q2 Dickson–Guralnick–Zieve F⊕2
q ⋊ F×

q [19, 6]

(6) q2 − q > 0 q2n(q + 1) (
∑n

i=0 αix
q2i)q+1 + (

∑n
i=0 αiy

q2i)q+1 Fq2n⋊ [7]
+c = 0 Z/(q + 1)Z

(7) 3 ≥ 0 ̸≡ 0 mod p Fermat curve cyclic [78, 95]
̸= q + 1

(8) 3 0 (1 : (1 + t)d : td) cyclic [101]
(9) ≥ 3 > 0 s(q + 1) birational embedding of Hermitian cyclic [33]

s | q − 1
(10) 2 ≥ 0 2m x2m + xm + y2m = 0 cyclic [91, 48]

̸≡ 0 mod p dihedral
(11) ≥ 2 ̸= 2 8 x2(x2 + 1)(x2 + 1

2
)2 + y8 = 0 cyclic [48]

dihedral
(12) ≥ 2 ̸= 2, 3 6 (x2 + 1)(x2 + 1

4
)2 + y6 = 0 cyclic [48]

dihedral
(13) ≥ 2 qℓ (xq − x)ℓ + λ(yq − y)ℓ (Z/pZ)⊕e

= 2 > 0 p ∤ ℓ, ℓ ≥ 3 +µ = 0 (*2) ⋊ [25]
(many cases) ℓ | q − 1 Z/ℓZ

(14) ≥ 2 > 0 q + 1 birational embedding of ym = xq + x cyclic [39]
(m | q + 1)

(15) ≥ 2 > 0 qr + 1 birational embedding of yq
r+1 = xq + x cyclic [39]

(16) ≥ 2 ≥ 3 q + 1 (t
q+1
2 : (t+ 1)

q+1
2 (t+ γ)

q+1
2 : tq+1 − γ) dihedral [50]

> 6 (γ ∈ Fq \ {±1}, γ q−1
2 = 1)

(17) 2 ≥ 3 q + 1 (t
q+1
2 : (t+ 1)q+1 : tq+1 + γ) cyclic [50]

> 4 (γ ∈ Fq \ {0,±1}) dihedral
cyclic,

(18) ≥ 2 11 12 birational embedding of P1 dihedral, [51]
or A4

cyclic,
(19) ≥ 2 23 24 birational embedding of P1 dihedral, [51]

or S4

cyclic,
(20) ≥ 2 59 60 birational embedding of P1 dihedral, [51]

or A5
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δ(C) p d curve groups ref.

(1) ∞ > 0 q x− yq = 0 cyclic [38]
(2) q3 + 1 > 0 q + 1 Fermat curve elem. p [59]
(3) q + 1 > 0 q + 1 (1 : (1 + t)q+1 : tq+1) elem. p [20]
(4) q + 1 2 q + 1

∏
α∈Fq

(x+ αy + α2) + cyq+1 = 0 elem. p [19, 22]

(c ̸= 0, 1)
(5) q + 1 > 0 q3 + 1 (projected) Giulietti–Korchmáros p-group [40]
(6) 4 ̸= 2, 3 4 x3 + y4 + 1 = 0 cyclic [78]
(7) 3 or 2 ̸= 3 4 ((t+ α)3 : t(t+ β)3 : t(t+ 1)3) cyclic [71, 29]

(β4 ̸= β, α = (β2 + β + 1)/3)
(8) ≥ 2 ̸= 3 4 birational embedding of Fermat cubic cyclic [31]
(9) ≥ 2 ̸= 2, 3 5 birational embedding of P1 cyclic [31]

(Z/2Z)⊕2

(10) 2 ̸= 2, 5 6 birational embedding of P1 cyclic [31]
(11) 2 ̸= 2, 3 4 (1 : (1 + t)3 : t4) cyclic [29]
(12) 2 > 0 q3 + 1 birational embedding of Hermitian p-group [32]
(13) 2 > 0 q + 1 birational embedding of ym = xq + x elem. p [39]

(m | q + 1)

(14) 2 ≥ 3 q (t
q+1
2 : (t− 1)

q+1
2 : tq − t) dihedral [50]

(15) 2 ≥ 3 q (t
q+1
2 : t− 1 : tq − t) cyclic [50]

dihedral
(16) 2 3 q3 + 1 birational embedding of Ree p-group [32]
(17) 2 2 q2 + 1 birational embedding of Suzuki p-group [32]
(18) ≥ 2 > 0 q3 + 1 quotient curves of GK curve p-group [41]
(19) ≥ 2 3 q3 + 1 (quotients of) Skabelund curve of Ree type p-group [41]
(20) ≥ 2 2 q2 + 1 (quotients of) Skabelund curve of Suzuki type p-group [41]
(21) ≥ 2 ≥ 0 5 birational embedding of an elliptic curve [68]
(22) ≥ 2 ≥ 0 7 birational embedding of an elliptic curve [68]
(23) ≥ 2 2 25 birational embedding of an elliptic curve [68]
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