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The purpose of this talk is

...1 to introduce the notion of Galois embedding

...2 and to show its application to curves and surfaces.
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Preliminary remark 1

First I explain a preliminary remark.
I have been having an interest in field theory. Suppose K is a
field finitely generated over a field k . If the extension K/k is
algebraic, then there are effective methods for the study, for
example, degree, Galois theory etc. However if not, then there
are no suitable ones (I think). How to study the extension K/k?
We take a purely transcendental extension as starting point. Let
n be the transcendental degree. In this case, we pay attention
to a maximal rational subfield Km, which has the following
properties:
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Preliminary remark 2

The properties are

...1 Km is an intermediate field between K and k ,

...2 and purely trans. ext. of k with the trans. degree n,

...3 there is no field between K and Km.
Then, we consider the algebraic extension K/Km

However, there is an inconvenient point.
In fact, even if n = 1 and K = k(x), there are many
maximal rational subfields:
k(x2), k(x3), . . . , k(xp), . . . (p is a prime number)
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Preliminary remark 3

So, we use the notion: the degree of irrationality, which is
defined as follows:
min { [K : Km] | Km is a maximal rational subfield. }
We denote this number by irr(K/k ) or irr(K ).
Clearly this number is a birational invariant.
K is rational if and only if irr(K )= 1.
Maximal rational subfield F with [K : F ] = irr(K ) is called
g-maximal rational subfield.
For example, for the elliptic function field
k(x , y), y2 = x3 + ax + b, 4a3 + 27b2 ̸= 0
irr(k(x , y)) = 2 and k(x) is a g-maximal rational subfield,
k(y) is a maximal rational field but not a g-maximal one.
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Preliminary remark 4

By the way, irr(k(x , y)) ̸= 1 is closely connected with the
integrabillity

∫
y dx , where f (x , y) = 0 and f (x , y) ∈ k [x , y ].

If x2 + y2 = 1, then irr(k(x , y)) = 1 and∫
1√

1 − x2
dx = sin−1 x

However, if x3 + y2 = 1, then irr(k(x , y)) = 2 and∫
1√

1 − x3
dx

cannot be expressed by elementary functions.
It needs higher functions, elliptic functions.
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Preliminary remark 5

I mention one more fact
An extension L/K corresponds to a surjective morphism
f : V −→ W ,
where V and W are algebraic varieties
with function fields L and K , respectively.
If the extension is algebraic, then the morphism is a covering.
Moreover, if the extension is Galois, then the covering is Galois.
So, we can ”see” field extension by the mapping between
varieties.
For example, for the elliptic function field k(x , y), the extension
k(x , y)/k(x) corresponds to
the double covering E −→ P1, where E is an elliptic curve.
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Preliminary remark 6

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R is nothing but the scheme Spec(R).
So, we can study algebra by variety, and vice versa.
Let’s look at an example (Lüroth Theorem)
Let k be an infinite field and x transcendental over k ,
If F is a subfield of k(x) and is trans. over k , then F is also a
purely trans. extension of k .
The proof is rather complicated if we use algebra.
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Preliminary remark 7

However, if we use geometry, the proof is very clear.
We have only to consider the regular 1-form.
By the way, the similar assertion for two dimensional case,
which is called Castelnuovo-Enriques Theorem, is too hard to
to prove by only algebra.
It can be proved by using the criterion of rationality of algebraic
surface S:
H0(S, O(2KS)) = H1(S, O) = 0
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Galois Point 1

.
Example
..

.

. ..

.

.

Before proceeding to the definition, we mention the notion of
Galois point for plane curve.
The notion of Galois embedding is a generalization of Galois
point.
Let k be a ground field, which is assumed to be an algebraically
closed field with characteristic zero.
Let C be a smooth plane curve of degree d .
Take a point P ∈ P2 and consider the projection πP

from P to P1, i.e., πP : P2 99K P1.
Restricting πP onto C, we get a surjective morphism
π : C −→ P1.
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.
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This induces an extension of fields k(C)/k(π∗(P1)) of degree
d − 1 or d , corresponding to P ∈ C and P /∈ C, respectively.
We notice that k(π∗(P1)) is a maximal rational subfield.
If we take P in C, then k(π∗(P1)) becomes a g-maximal rational
subfield.
If the extension is Galois, we call P is a Galois point,
or if the covering π : C −→ P1 is Galois, so is called P.
Such a point is a very special one.
If we take a general point for C, then it is not a Galois point.
If P is a Galois point, then the Galois group Gal(k(C)/k(P1)) is
the cyclic group of order d − 1 or d .
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.
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If P is a general point, then the Galois group of the Galois
closure is a full symmetric group.
In general it is difficult to determine the Galois group.
Note that in case k has a positive characteristic, there are big
differences in the results.
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Galois embedding 1

Now we treat varieties not necessarily in the projective spaces.
I make preparations for the definition.
k : ground field, k̄ = k and ch(k) ≥ 0
later we will assume k = C.
V : nonsingular proj. variety, dimV = n
D : very ample divisor
f = fD : V −→ PN : embedding assoc. with |D|
where N + 1 = dim H0(V , O(D))
W : linear subvariety of PN s.t.
dimW = N − n − 1, W ∩ f (V ) = ∅
πW : PN 99K Pn : projection with the center W
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Galois embedding 2

π = πW · f : V −→ Pn

K = k(V ) : function field of V
K0 = k(Pn) : function field of Pn

π∗ : K0 ↪→ K : finite extension, d := degπ∗ = deg f (V ) = Dn

The structure of this extension depends on W .
KW : Galois closure of K/K0 (in case separable ext.)
GW := Gal(KW/K0)
VW : KW -normalization of V
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Galois embedding 3

.
Definition
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We call GW the Galois group at W
and VW the Galois closure variety at W .
If K/K0 is Galois,
we call f and W a Galois embedding and Galois subspace
respectively.
In case dim W = 0 and 1
W is said to be a Galois point and line, respectively.
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.
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..

.

. ..

.

.

V is said to have a Galois embedding
if there exists a very ample divisor D
s.t. the embedding assoc. with |D| has a Galois subspace.

In this case we say that (V ,D) defines a Galois embedding.
.
Remark
..

.

. ..

.

.

It may happen that there exist several Galois subspaces for
fD(V ).
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.
Remark
..

.
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.

GW is isomorphic to the
monodromy group of the covering π : V −→ Pn.

.
Remark
..

.

. ..

.

.

If W is general for fD(V ), then GW is isomorphic to
the full symmetric group of degree d.

So, we consider for non-general W .
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Basic result 1

Hereafter we assume W is a Galois subspace.
.
Proposition
..
.
. ..

.

.There exists an injective representation α : GW ↪→ Aut(V ).

.
Corollary
..
.
. ..

.

.If Aut(V ) is trivial, then V has no Galois embedding.

.
Proposition
..
.
. ..

.

.We have another injective representation β : GW ↪→ PGL(N, k).
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Basic result 2

.
Proposition
..
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We have V/GW
∼= Pn.

The projection π : V −→ Pn turns out a finite morphism.
In particular, the fixed loci of GW consists of divisors.
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Criterion

.
Theorem
..

.

. ..
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(V ,D) defines a Galois embedding iff

...1 There exists a subgroup G of Aut(V ) with |G| = Dn.

...2 There exists a G-invariant linear subspace L of
H0(V , O(D)) of dimension n + 1 such that,
for any σ ∈ G, the restriction σ∗|L is a multiple of the
identity.

...3 The linear system L has no base points.
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Problem

There are lots of problems, let’s take up typical ones:
.
Problem
..

.

. ..

.

.

...1 Find the structure of GW .

...2 How is the structure of V which has a Galois embedding?

...3 How is the divisor class of D which defines a Galois
embedding?

...4 Find the arrangement of Galois subspaces for f (V ).

...5 What is the Galois closure variety VW ?
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.
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Let us examine the Galois embedding for elliptic curves E :
(i) deg D = 3 case:

E has a Galois embedding iff j(E) = 0.
G ∼= Z3, there exists three Galois points.

In other words, let C be a smooth plane cubic.
Assume P ∈ P2 \ C and consider the projection π
with the center P to P1.
Then, π induces a Galois extension k(C)/k(π∗(P1)), or Galois
covering
π|C : C −→ P1 iff P is a Galois point.
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.
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The C has a Galois point iff j(C) = 0,
it is projectively equivalent to the Fermat cubic :
X 3 + Y 3 + Z 3 = 0.
There are three Galois points: (1 : 0 : 0), (0 : 1 : 0) and
(0 : 0 : 1).
If we use Weierstrass normal form, C is given by
Y 2Z = 4X 3 + Z 3 and
the Galois points are (1;0 : 0), (0 :

√
−3 : 1)

and (0 : −
√
−3 : 1)
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.
Example
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(ii) deg D = 4 case:
|D| defines always a Galois embedding.
fD(E) = C ⊂ P3 has six Galois lines
the six lines form a tetrahedron (as in the next page):
G ∼= Z/2Z⊕ Z/2Z
If j(E) = 123, there exist eight Z4-lines in addition.
In this case the arrangement of Galois lines is very

complicated.
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.
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..

.

. ..

.

.

Galois lines for a space elliptic curve (j(E) ̸= 123).
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.
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In other words, let C be a smooth genus-one curve in
the projective three space P3.
Then C has 6 Galois lines ℓi (i = 1, . . . , 6)
i.e., the projection with the center ℓi to P1

induces a Galois covering C −→ P1

with the Galois group G.
(iii) If deg D = 5, E has no Galois embeddings.
(iv) For any deg D, we can find the possibility of G,

however it is difficult to determine the arrangement of Galois
subspaces.
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.
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Abelian variety of dimension two is called abelian surface.
Suppose an abelian surface A has a Galois embedding.
Then, we can find all possible analytic representations of G.
in particular,

they are not commutative,
A is isogenous to E × E .
The least number N such that A has a Galois embedding

into PN

is seven.
All such surfaces can be determined.
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For the details, please refer to
J. Algebra 226, 239, 264, 287, 320, 321, 323 and others listed
in our website
http://hyoshihara.web.fc2.com/
In this site about 70 open questions are asked.
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