GALOIS LINES FOR NORMAL ELLIPTIC SPACE CURVES, III

MITSUNORI KANAZAWA AND HISAO YOSHIHARA

ABSTRACT. We show the arrangement of V_4 and Z_4 -lines for the linearly normal space elliptic curve with j(E) = 1. As a corollary, we show that each irreducible quartic curve with genus one has at most two Galois points.

1. INTRODUCTION

We have been studying Galois embedding of algebraic varieties [5], in particular, of elliptic curves E. In this case, by Lemma 8 in [6] we can assume the embedding is associated with the complete linear system $|nP_0|$ for some $n \geq 3$, where $P_0 \in E$. Let $f_n : E \hookrightarrow \mathbb{P}^{n-1}$ be the embedding and put $C_n = f_n(E)$. Then we consider the Galois subspaces, Galois group, the arrangement of Galois subspaces and etc. for C_n in \mathbb{P}^{n-1} . In the previous papers [1, 6] we have treated in the case where n = 4 and settled almost all questions. However, the arrangement of V_4 and Z_4 -lines has not been determined completely for j(E) = 1, i.e., the curve with an automorphism of order four with a fixed point. In this article we will complete it. Furthermore, we show the number of Galois points for an irreducible quartic curve of genus one, which is a correction of the assertion of Corollary 2 in [6].

Key words and phrases. Galois point, genus-one curve, Galois group.

2. Statement of result

Theorem 1. The arrangement of all the Galois lines for C_4 , where $j(C_4) = 1$, is illustrated by the union of the following two figures:

and

In these figures, • denotes the intersection of V_4 -lines and \circ denotes the intersection of a V_4 -line and a Z_4 -line. Four points Q_0 , $Q_1 Q_2$ and Q_3 are not coplanar. These points form vertices of a tetrahedron. Let ℓ_{ij} be the line passing through Q_i and Q_j ($0 \leq i < j \leq 3$). Then, all the V_4 -lines are ℓ_{01} , ℓ_{02} , ℓ_{03} , ℓ_{12} , ℓ_{13} and ℓ_{23} . Except these lines, each line is a Z_4 -line. For each vertex there exist two Z_4 -lines passing through it. Two Z_4 -lines which do not pass through the same vertex are disjoint. A Z_4 -line meets V_4 -lines at two points. One is a vertex Q_i of the tetrahedron, we let the other be R_{ij} (which is indicated by \circ in the figures), where $0 \leq i \leq 3$ and j = 1, 2. By taking a suitable coordinates of \mathbb{P}^3 , we can give the coordinates of Q_i and R_{ij} explicitly as follows, in the following we use the notation $i = \sqrt{-1}$:

 $\begin{aligned} Q_0 &= (0:0:0:1), \ Q_1 = (4:-1:2:0), \ Q_2 = (4:-1:-2:0), \\ Q_3 &= (4:1:0:0), \\ R_{01} &= (0:0:1:0), \ R_{02} = (4:-1:0:0), \ R_{31} = (4:-1:2i:0), \\ R_{32} &= (4:-1:-2i:0), \ R_{11} = (4:1:0:-2\sqrt{2}i), \ R_{12} = (4:1:0:2\sqrt{2}i), \end{aligned}$

$$R_{21} = (4:1:0:2\sqrt{2}), \ R_{22} = (4:1:0:-2\sqrt{2})$$

In Corollary 2 in [6] we must asume $j(E) \neq 1$. So we correct the corollary as follows:

Corollary 2. Let Γ be an irreducible quartic curve in \mathbb{P}^2 and E the normalization of it. Assume the genus of E is one. If j(E) = 1 (resp. $\neq 1$), then the number of Galois points is at most two (resp. one).

In fact, Takahashi found an example of such curves: $s^4 + s^2u^2 + t^4 = 0$. It is easy to see that the genus of the normalization is one and (s:t:u) = (0:1:0)is a Z₄-point and (1:0:0) is a V₄-point. We can find many such examples as follows:

Remark 1. Let L_{ij} and ℓ_{pq} be the Z_4 and V_4 -lines passing though R_{ij} , where $0 \leq i \leq 3, j = 1, 2$ and if i = 0 or 3 (resp. 1 or 2), then (p,q) = (1,2) (resp. (0,3)). Let $\pi_{ij} : \mathbb{P}^3 \cdots \longrightarrow \mathbb{P}^2$ be the projection with the center R_{ij} . Then, $\pi_{ij}(C_4) = \Gamma_{ij}$ is an irreducible quartic curve and the points $\pi_{ij}(L_{ij})$ and $\pi_{ij}(\ell_{pq})$ are Z_4 and V_4 -points, respectively. For example, take the point R = (0:0:1:0) as the projection center. Then, $\pi_R(X:Y:Z:W) = (X:Y:W)$. The Z_4 -line L: X = Y = 0 and V_4 -line $\ell: X + 4Y = W = 0$ pass through R. The defining equation of $\pi_R(C_4)$ is $W^4 = XY(X - 4Y)^2$, $\pi_R(L) = (0:0:1)$ and $\pi_R(\ell) = (-4:1:0)$. By the projective change of coordinates

$$X = X' - iY', \quad Y = -(X' + iY')/4$$

we get the example of Takahashi.

We have an interest in the group generated by the Galois groups associated with Galois lines [3]. In the current case we have the following:

Corollary 3. Let \mathcal{G} be the group generated by the groups associated with the Galois lines. Then, we have $\mathcal{G} \cong (Z_2 \times Z_4) \rtimes Z_4$.

3. Proof

Hereafter we treat only the case j(E) = 1. We use the same notation and convention as in [6]. Let us recall briefly:

- $\pi : \mathbb{C} \longrightarrow E = \mathbb{C}/\mathcal{L}, \quad \mathcal{L} = \mathbb{Z} + \mathbb{Z}i, \quad i = \sqrt{-1}$
- $x = \wp(z), \ y = \wp'(z), \ \wp$ -functions with respect to \mathcal{L} .
- $\varphi : \mathbb{C} \longrightarrow \mathbb{C}/\mathcal{L} \xrightarrow{\sim} E : y^2 = 4x^3 x$
- $P_{\alpha} := \varphi(\alpha) \in E$, $(\alpha \in \mathbb{C})$, in particular, $P_0 = \varphi(0)$
- + denotes the sum of complex numbers $\alpha + \beta$ in \mathbb{C} and at the same time the sum of divisors $P_{\alpha} + P_{\beta}$ on E
- \sim : linear equivalence
- Note that $P_{\alpha} + P_{\beta} \sim P_{\alpha+\beta} + P_0$ holds true.
- V_4 : Klein's four group
- Z_n : cyclic group of order n

• $\langle \cdots \rangle$: the group generated by \cdots

Since the embedding is associated with $|4P_0|$, we can assume it is given by

$$f = f_4 : E \longrightarrow \mathbb{P}^3, \ f(x, y) = (1 : x^2 : x : y)$$

Put C = f(E). The V_4 -lines have been determined in [6]. Recall that the Galois group associated with V_4 -line is $\langle \rho_i, \rho_j \rangle$ for some i, j where $0 \le i < j \le 3$. Let σ be a complex representation of a generator of the group associated with Z_4 -line. As we see in the proof of Lemma 20 in [6], σ can be expressed as $\sigma(z) = iz + (m+ni)/4$, where (m, n) = (0, 0), (2, 2), (3, 1), (1, 3), (1, 1), (3, 3), (2, 0)or (0, 2). So we put as follows:

Furthermore we put

$$\rho_0 = \sigma_0^2, \quad \rho_1 = \sigma_2^2, \quad \rho_2 = \sigma_4^2 \quad \rho_3 = \sigma_6^2 = \sigma_7^2.$$

Note that

$$\sigma_0^2 \equiv \sigma_1^2(\mathrm{mod}\mathcal{L}), \ \sigma_2^2 \equiv \sigma_3^2(\mathrm{mod}\mathcal{L}), \ \sigma_4^2 \equiv \sigma_5^2(\mathrm{mod}\mathcal{L}) \ \sigma_6^2 \equiv \sigma_7^2(\mathrm{mod}\mathcal{L}).$$

and

$$\rho_0(z) = -z, \quad \rho_1(z) = -z + \frac{1}{2}, \quad \rho_2(z) = -z + \frac{i}{2}, \quad \rho_3(z) = -z + \frac{1+i}{2}.$$

Let V be the vector space spanned by $\{1, x^2, x, y\}$ over \mathbb{C} . If σ is an element of the Galois group associated with a Galois line ℓ , then it induces a linear transformation $M(\sigma)$ of V. The $M(\sigma)$ defines a projective transformation, which is denoted by the same letter. It has the following properties:

- (1) Some eigenvalue belongs to at least two independent eigenvectors.
- (2) $M(\sigma)(\ell) = \ell$, i.e., $M(\ell)$ induces an automorphism of $\ell \cong \mathbb{P}^1$.

There are two characterizations of the vertices, one is the following Lemma 17 in [6]:

Lemma 1. There exist exactly four irreducible quadratic surfaces S_i ($0 \le i \le 3$) such that each S_i has a singular point and contains C. Let Q_i be the unique singular point of S_i . Then the four points are not coplanar.

The other one is as follows:

Lemma 2. The $M(\rho_i)$ $(0 \le i \le 3)$ has two eigenvalues λ_{i1} and λ_{i2} which belong to one and three independent eigenvectors, respectively. Let Q_i be the point in \mathbb{P}^3 defined by the eigenvector having the eigenvalue λ_{i1} . Then, these points coincide with the ones in Lemma 1. Then the line passing through Q_i and Q_j $(0 \le i < j \le 3)$ is a V₄-line. Four points $\{Q_1, Q_2, Q_3, Q_4\}$ are not coplanar, so they form a vertex of a tetrahedron T.

Proof. These are checked by direct computations. To find the action of ρ_i on V, we have to find the one of ρ_i on $x = \wp(z)$ and $y = \wp'(z)$. For the purpose we use the addition formula on elliptic curve.

$$\begin{array}{rcl} \rho_0(1,x^2,x,y) &=& (1,x^2,x,-y) \\ \rho_1(1,x^2,x,y) &=& (4x^2-4x+1,\ x^2+x+\frac{1}{4},\ 2x^2-\frac{1}{2},\ 2y) \\ \rho_2(1,x^2,x,y) &=& (4x^2+4x+1,x^2-x+\frac{1}{4},-2x^2+\frac{1}{2},\ 2y) \\ \rho_3(1,x^2,x,y) &=& (16x^2,1,-4x,-4y) \end{array}$$

The representation matrices are as follows:

$$M(\rho_0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \quad M(\rho_1) = \begin{pmatrix} 1 & 4 & -4 & 0 \\ \frac{1}{4} & 1 & 1 & 0 \\ -\frac{1}{2} & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$M(\rho_2) = \begin{pmatrix} 1 & 4 & 4 & 0 \\ \frac{1}{4} & 1 & -1 & 0 \\ \frac{1}{2} & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} \quad M(\rho_3) = \begin{pmatrix} 0 & 16 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix}$$

Eigenvalues λ and eigenvectors of $M(\rho)$ are as follows: $M(\rho_0) \ \lambda = -1 : (0, 0, 0, 1) \ \lambda = 1 : (1, 0, 0, 0), \ (0, 1, 0, 0), \ (0, 0, 1, 0)$ $M(\rho_1) \ \lambda = -2 : (4, -1, 2, 0) \ \lambda = 2 : (1, 0, -1/2, 0), \ (0, 1, 1, 0), \ (0, 0, 0, 1)$ $M(\rho_2) \ \lambda = -2 : (4, -1, -2, 0) \ \lambda = 2 : (4, 0, 1, 0), \ (0, 1, -1, 0), \ (0, 0, 0, 1)$ $M(\rho_3) \ \lambda = 4 : (4, 1, 0, 0) \ \lambda = -4 : (4, -1, 0, 0), \ (0, 0, 1, 0), \ (0, 0, 0, 1)$

Similarly we can find Z_4 -lines by the following calculations:

$$\begin{split} \sigma_{0}(1,x^{2},x,y) &= (1,x^{2},-x,iy) \\ \sigma_{1}(1,x^{2},x,y) &= (16x^{2},1,4x,4ix) \\ \sigma_{2}(1,x^{2},x,y) &= (-2y+\sqrt{2}(i-1)x^{2}-\sqrt{2}(1+i)x - \frac{\sqrt{2}(i-1)}{4}, \\ &\quad -\frac{1}{2}y - \frac{\sqrt{2}(i-1)x^{2}}{2} + \frac{\sqrt{2}(i+1)}{2}x + \frac{\sqrt{2}(i-1)}{4}, \\ &\quad \frac{1}{\sqrt{2}}y - \frac{\sqrt{2}(i-1)x^{2}}{2} + \frac{\sqrt{2}(i-1)}{2}x - \frac{\sqrt{2}+\sqrt{2}i}{2}, \frac{1}{2}x^{2} + \frac{1}{2} \\ \sigma_{3}(1,x^{2},x,y) &= (4\sqrt{2}iy - (1+i)(4x^{2} + 4ix - 1), \frac{1}{4}(4\sqrt{2}iy + (1+i)(4x^{2} + 4ix - 1)), \\ &\quad \frac{1-2}{2}(4x^{2} - 4ix - 1), -\sqrt{2}(4x^{2} + 1)) \\ \sigma_{4}(1,x^{2},x,y) &= (-2\sqrt{2}(1+i)y - 4ix^{2} - 4x + i, \\ &\quad \frac{1-\sqrt{2}i}{\sqrt{2}}y + ix^{2} + x - \frac{1}{4}, 2x^{2} + 2ix - \frac{1}{2}, \\ &\quad -\sqrt{2}(1+i)x^{2} - \frac{1+i}{2} \\ \sigma_{5}(1,x^{2},x,y) &= (2\sqrt{2}(1+i)y - 4ix^{2} - 4x + i, \\ &\quad \frac{1}{\sqrt{2}y} + ix^{2} + x - \frac{1}{4}, 2x^{2} + \frac{1}{2}, -\frac{1+i}{2}(4x^{2} + 1)) \\ \sigma_{6}(1,x^{2},x,y) &= (4x^{2} + 4x + 1, x^{2} - x + \frac{1}{4}, 2x^{2} - \frac{1}{2}, -\frac{1+i}{2}(4x^{2} + 1)) \\ \sigma_{6}(1,x^{2},x,y) &= (4x^{2} + 4x + 1, x^{2} + x + \frac{1}{4}, 2x^{2} - \frac{1}{2}, -\frac{1+i}{2}) \\ \sigma_{7}(1,x^{2},x,y) &= (4x^{2} - 4x + 1, x^{2}x + \frac{1}{4}, -2x^{2} + \frac{1}{2}, -2iy) \\ M(\sigma_{0}) &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & i \end{pmatrix} \\ M(\sigma_{2}) &= \begin{pmatrix} \frac{i+1}{-\frac{i+1}{4}} & -i-1 & 1 - i & -\sqrt{2}i \\ -\frac{i+1}{2} & \frac{i+1}{2} & 0 \\ \frac{1-\frac{i+1}{2}}{2\sqrt{2}} & \sqrt{2}i & 0 & 0 \end{pmatrix} \\ M(\sigma_{3}) &= \begin{pmatrix} 1+i & -4(1+i) & 4(1-i) & 4\sqrt{2}i \\ -\frac{1+i}{2} & 1 + i & i - 1 & \sqrt{2}i \\ -\frac{1-i}{2} & 2 & 2i & 0 \\ -\sqrt{2}i & -4\sqrt{2} & 0 & 0 \end{pmatrix} \\ M(\sigma_{4}) &= \begin{pmatrix} i & -4i & -4 & 2\sqrt{2}(1+i) \\ -\frac{i}{2} & 2 & 2i & 0 \\ -\frac{1+i}{\sqrt{2}} & 2\sqrt{2}(1+i) & 0 & 0 \end{pmatrix} \\ M(\sigma_{5}) &= \begin{pmatrix} 1 & 4 & 4 & 0 \\ \frac{1}{4} & 1 & -1 & 0 \\ -\frac{1}{\sqrt{2}} & 2 & \sqrt{2}(1+i) & 0 & 0 \end{pmatrix} \\ M(\sigma_{6}) &= \begin{pmatrix} 1 & 4 & 4 & 0 \\ \frac{1}{4} & 1 & -1 & 0 \\ -\frac{1}{\sqrt{2}} & 2 & \sqrt{2}(1+i) & 0 & 0 \end{pmatrix} \\ M(\sigma_{6}) &= \begin{pmatrix} 1 & 4 & 4 & 0 \\ \frac{1}{4} & 1 & -1 & 0 \\ -\frac{1}{\sqrt{2}} & 2 & 0 & 0 \\ 0 & 0 & 0 & -2i \end{pmatrix} M(\sigma_{7}) &= \begin{pmatrix} 1 & 4 & -4 & 0 \\ \frac{1}{4} & 1 & 1 & 0 \\ \frac{1}{2} - 2 & 0 & 0 \\ 0 & 0 & 0 & -2i \end{pmatrix} \end{pmatrix}$$

Eigenvalues λ and eigenvectors of $M(\sigma)$ are as follows: $M(\sigma_0) \ \lambda = -1 : (4, -1, 0, 0) \ \lambda = 1 : (4, 1, 0, 0), \ (0, 0, 1, 0), \ \lambda = i \ (0, 0, 0, 1)$ $M(\sigma_1) \ \lambda = -1 : (4, -1, 0, 0) \ \lambda = 1 : (4, 1, 0, 0), \ (0, 0, 1, 0), \ \lambda = i \ (0, 0, 0, 1)$ $M(\sigma_2) \ \lambda = i : (4, -1, -2, 0) \ \lambda = 1 : (4\sqrt{2}, 0, \sqrt{2}, 2i), \ (0, 1, -1, \sqrt{2}i), \ \lambda = -1 \ (4\sqrt{2}, \sqrt{2}, 0, -4i)$ $M(\sigma_3) \ \lambda = i : (4, -1, -2, 0) \ \lambda = 1 : (4\sqrt{2}, 0, \sqrt{2}, -2i), \ (0, 1, -1, -\sqrt{2}i), \ \lambda = -1 \ (4\sqrt{2}, \sqrt{2}, 0, 4i)$ $M(\sigma_4) \ \lambda = -2 - 2i : (4\sqrt{2}, \sqrt{2}, 0, 4) \ \lambda = 2 + 2i : (4\sqrt{2}, 0, -\sqrt{2}, -2), \ (0, 1, 1, -\sqrt{2}), \ \lambda = -2 + 2i \ (4, -1, 2, 0)$ $M(\sigma_5) \ \lambda = -2 - 2i : (4\sqrt{2}, \sqrt{2}, 0, -4) \ \lambda = 2 + 2i : (4\sqrt{2}, 0, -\sqrt{2}, 2), \ (0, 1, 1, \sqrt{2}), \ \lambda = -2 + 2i \ (4, -1, 2, 0)$ $M(\sigma_6) \ \lambda = 2i : (4, -1, 2i, 0) \ \lambda = -2i : (4, -1, -2i, 0), \ (0, 0, 0, 1), \ \lambda = 2 \ (4, 1, 0, 0)$ $M(\sigma_7) \ \lambda = 2i : (4, -1, -2i, 0) \ \lambda = -2i : (4, -1, -2i, 0), \ (0, 0, 0, 1), \ \lambda = 2 \ (4, 1, 0, 0)$

Corollary 4. (1) In case $J \neq 12^3$, $\mathcal{G}_0 = \langle \rho_0, \rho_1, \rho_2 \rangle \cong Z_2 \times Z_2 \times Z_2$. an example of the curve with this group is given in [4]

$$(4y^4 + 5xy^2 - 1)^2 = xy^2(x + 8y^2)^2.$$

(2) In cse $J = 12^3$ we can show $\mathcal{G} = \langle \sigma_0, \sigma_2, \sigma_6 \rangle$. Putting

$$\alpha(z) = z + \frac{1}{2}, \quad \beta(z) = z + \frac{1+i}{4},$$

we have $\langle \alpha, \beta \rangle \cong Z_2 \times Z_4$ and

$$\mathcal{G} \cong \langle \alpha, \beta \rangle \rtimes \langle \sigma_0 \rangle$$

It is easy to see that \mathcal{G}_0 is a normal subgroup of \mathcal{G} . In particular $|\mathcal{G}| = 32$ and \mathcal{G} is called an elliptic exceptional group E(2, 2, 4) in [4]. Furthermore this group is appear as the group by the embedding of degree 32 of the elliptic curve j(E) = 1.

References

- C. Duyaguit and H. Yoshihara, Galois lines for normal elliptic space curvea, Algebra Colloquium, 12 (2005), 205–212.
- 2. J. Harris, Galois groups of enumerative problems, Duke Math. J., 46 (1979), 685–724.
- 3. M. Kanazawa, T. Takahashi and H. Yoshihara, The group generated by automorphism belonging to Galois points of the quartic surface, *Nihonkai Math. J.*, **12** (2001), 89–99.
- M. Kanazawa and H. Yoshihara, Galois group at Galois point for genus-one curve, Int. J. Algebra, 5 (2011), 1161–1174.
- H. Yoshihara, Galois embedding of algebraic variety and its application to abelian surface, Rend. Sem. Mat. Univ. Padova, 117 (2007), 69–86
- H. Yoshihara, Galois lines for normal elliptic space curves, II, Algebra Colloquium, 19 (2012), no.spec 01, 867–876

Graduate School of Science and Technology,, Niigata University Niigata 950-2181, Japan and, Department of Mathematics, Faculty of Science,, Niigata University, Niigata 950-2181, Japan

E-mail address: mi_kana@js3.so-net.ne.jp and yosihara@math.sc.niigata-u.ac.jp