GALOIS LINES FOR NORMAL ELLIPTIC SPACE CURVES, III

MITSUNORI KANAZAWA AND HISAO YOSHIHARA

Abstract

We show the arrangement of V_{4} and Z_{4}-lines for the linearly normal space elliptic curve with $j(E)=1$. As a corollary, we show that each irreducible quartic curve with genus one has at most two Galois points.

1. Introduction

We have been studying Galois embedding of algebraic varieties [5], in particular, of elliptic curves E. In this case, by Lemma 8 in [6] we can assume the embedding is associated with the complete linear system $\left|n P_{0}\right|$ for some $n \geq 3$, where $P_{0} \in E$. Let $f_{n}: E \hookrightarrow \mathbb{P}^{n-1}$ be the embedding and put $C_{n}=f_{n}(E)$. Then we consider the Galois subspaces, Galois group, the arrangement of Galois subspaces and etc. for C_{n} in \mathbb{P}^{n-1}. In the previous papers $[1,6]$ we have treated in the case where $n=4$ and settled almost all questions. However, the arrangement of V_{4} and Z_{4}-lines has not been determined completely for $j(E)=1$, i.e., the curve with an automorphism of order four with a fixed point. In this article we will complete it. Furthermore, we show the number of Galois points for an irreducible quartic curve of genus one, which is a correction of the assertion of Corollary 2 in [6].

[^0]
2. Statement of result

Theorem 1. The arrangement of all the Galois lines for C_{4}, where $j\left(C_{4}\right)=1$, is illustrated by the union of the following two figures:

and

In these figures, • denotes the intersection of V_{4}-lines and \circ denotes the intersection of a V_{4}-line and a Z_{4}-line. Four points $Q_{0}, Q_{1} Q_{2}$ and Q_{3} are not coplanar. These points form vertices of a tetrahedron. Let $\ell_{i j}$ be the line passing through Q_{i} and $Q_{j}(0 \leq i<j \leq 3)$. Then, all the V_{4}-lines are $\ell_{01}, \ell_{02}, \ell_{03}, \ell_{12}, \ell_{13}$ and ℓ_{23}. Except these lines, each line is a Z_{4}-line. For each vertex there exist two Z_{4}-lines passing through it. Two Z_{4}-lines which do not pass through the same vertex are disioint. A Z_{4}-line meets V_{4}-lines at two points. One is a vertex Q_{i} of the tetrahedron, we let the other be $R_{i j}$ (which is indicated by \circ in the figures), where $0 \leq i \leq 3$ and $j=1$, 2. By taking a suitable coordinates of \mathbb{P}^{3}, we can give the coordinates of Q_{i} and $R_{i j}$ explicitly as follows, in the following we use the notation $i=\sqrt{-1}$:

$$
\begin{aligned}
& Q_{0}=(0: 0: 0: 1), Q_{1}=(4:-1: 2: 0), Q_{2}=(4:-1:-2: 0), \\
& Q_{3}=(4: 1: 0: 0), \\
& R_{01}=(0: 0: 1: 0), R_{02}=(4:-1: 0: 0), R_{31}=(4:-1: 2 i: 0), \\
& R_{32}=(4:-1:-2 i: 0), R_{11}=(4: 1: 0:-2 \sqrt{2} i), R_{12}=(4: 1: 0: 2 \sqrt{2} i),
\end{aligned}
$$

$$
R_{21}=(4: 1: 0: 2 \sqrt{2}), R_{22}=(4: 1: 0:-2 \sqrt{2})
$$

In Corollary 2 in [6] we must asume $j(E) \neq 1$. So we correct the corollary as follows:

Corollary 2. Let Γ be an irreducible quartic curve in \mathbb{P}^{2} and E the normalization of it. Assume the genus of E is one. If $j(E)=1$ (resp. $\neq 1$), then the number of Galois points is at most two (resp. one).

In fact, Takahashi found an example of such curves: $s^{4}+s^{2} u^{2}+t^{4}=0$. It is easy to see that the genus of the normalization is one and $(s: t: u)=(0: 1: 0)$ is a Z_{4}-point and $(1: 0: 0)$ is a V_{4}-point. We can find many such examples as follows:

Remark 1. Let $L_{i j}$ and $\ell_{p q}$ be the Z_{4} and V_{4}-lines passing though $R_{i j}$, where $0 \leq i \leq 3, j=1,2$ and if $i=0$ or 3 (resp. 1 or 2), then $(p, q)=(1,2)$ (resp. $(0,3))$. Let $\pi_{i j}: \mathbb{P}^{3} \cdots \longrightarrow \mathbb{P}^{2}$ be the projection with the center $R_{i j}$. Then, $\pi_{i j}\left(C_{4}\right)=\Gamma_{i j}$ is an irreducible quartic curve and the points $\pi_{i j}\left(L_{i j}\right)$ and $\pi_{i j}\left(\ell_{p q}\right)$ are Z_{4} and V_{4}-points, respectively. For example, take the point $R=(0: 0$: $1: 0)$ as the projection center. Then, $\pi_{R}(X: Y: Z: W)=(X: Y: W)$. The Z_{4}-line $L: X=Y=0$ and V_{4}-line $\ell: X+4 Y=W=0$ pass through R. The defining equation of $\pi_{R}\left(C_{4}\right)$ is $W^{4}=X Y(X-4 Y)^{2}, \pi_{R}(L)=(0: 0: 1)$ and $\pi_{R}(\ell)=(-4: 1: 0)$. By the projective change of coordinates

$$
X=X^{\prime}-i Y^{\prime}, \quad Y=-\left(X^{\prime}+i Y^{\prime}\right) / 4
$$

we get the example of Takahashi.
We have an interest in the group generated by the Galois groups associated with Galois lines [3]. In the current case we have the following:

Corollary 3. Let \mathcal{G} be the group generated by the groups associated with the Galois lines. Then, we have $\mathcal{G} \cong\left(Z_{2} \times Z_{4}\right) \rtimes Z_{4}$.

3. Proof

Hereafter we treat only the case $j(E)=1$. We use the same notation and convention as in [6]. Let us recall briefly:

- $\pi: \mathbb{C} \longrightarrow E=\mathbb{C} / \mathcal{L}, \quad \mathcal{L}=\mathbb{Z}+\mathbb{Z} i, \quad i=\sqrt{-1}$
- $x=\wp(z), y=\wp^{\prime}(z), \quad \wp$-functions with respect to \mathcal{L}.
- $\varphi: \mathbb{C} \longrightarrow \mathbb{C} / \mathcal{L} \xrightarrow{\sim} E: y^{2}=4 x^{3}-x$
- $P_{\alpha}:=\varphi(\alpha) \in E,(\alpha \in \mathbb{C})$, in particular, $P_{0}=\varphi(0)$
- + denotes the sum of complex numbers $\alpha+\beta$ in \mathbb{C} and at the same time the sum of divisors $P_{\alpha}+P_{\beta}$ on E
- ~ : linear equivalence
- Note that $P_{\alpha}+P_{\beta} \sim P_{\alpha+\beta}+P_{0}$ holds true.
- V_{4} : Klein's four group
- Z_{n} : cyclic group of order n
- $\langle\cdots\rangle$: the group generated by \cdots

Since the embedding is associated with $\left|4 P_{0}\right|$, we can assume it is given by

$$
f=f_{4}: E \longrightarrow \mathbb{P}^{3}, \quad f(x, y)=\left(1: x^{2}: x: y\right)
$$

Put $C=f(E)$. The V_{4}-lines have been determined in [6]. Recall that the Galois group associated with V_{4}-line is $\left\langle\rho_{i}, \rho_{j}\right\rangle$ for some i, j where $0 \leq i<j \leq 3$. Let σ be a complex representation of a generator of the group associated with Z_{4}-line. As we see in the proof of Lemma 20 in [6], σ can be expressed as $\sigma(z)=$ $i z+(m+n i) / 4$, where $(m, n)=(0,0),(2,2),(3,1),(1,3),(1,1),(3,3),(2,0)$ or $(0,2)$. So we put as follows:
(0) $\sigma_{0}(z)=i z$
(1) $\sigma_{1}(z)=i z+\frac{1+i}{2}$
(2) $\sigma_{2}(z)=i z+\frac{3+i}{4}$
(3) $\sigma_{3}(z)=i z+\frac{1+3 i}{4}$
(4) $\sigma_{4}(z)=i z+\frac{1+i}{4}$
(5) $\sigma_{5}(z)=i z+\frac{3+3 i}{4}$
(6) $\sigma_{6}(z)=i z+\frac{1}{2}$
(7) $\sigma_{7}(z)=i z+\frac{i}{2}$

Furthermore we put

$$
\rho_{0}=\sigma_{0}^{2}, \quad \rho_{1}=\sigma_{2}^{2}, \quad \rho_{2}=\sigma_{4}^{2} \quad \rho_{3}=\sigma_{6}^{2}=\sigma_{7}^{2} .
$$

Note that

$$
\sigma_{0}^{2} \equiv \sigma_{1}^{2}(\bmod \mathcal{L}), \sigma_{2}^{2} \equiv \sigma_{3}^{2}(\bmod \mathcal{L}), \quad \sigma_{4}^{2} \equiv \sigma_{5}^{2}(\bmod \mathcal{L}) \quad \sigma_{6}^{2} \equiv \sigma_{7}^{2}(\bmod \mathcal{L})
$$

and

$$
\rho_{0}(z)=-z, \quad \rho_{1}(z)=-z+\frac{1}{2}, \quad \rho_{2}(z)=-z+\frac{i}{2}, \quad \rho_{3}(z)=-z+\frac{1+i}{2} .
$$

Let V be the vector space spanned by $\left\{1, x^{2}, x, y\right\}$ over \mathbb{C}. If σ is an element of the Galois group associated with a Galois line ℓ, then it induces a linear transformation $M(\sigma)$ of V. The $M(\sigma)$ defines a projective transformation, which is denoted by the same letter. It has the following properties:
(1) Some eigenvalue belongs to at least two independent eigenvectors.
(2) $M(\sigma)(\ell)=\ell$, i.e., $M(\ell)$ induces an automorphism of $\ell \cong \mathbb{P}^{1}$.

There are two characterizations of the vertices, one is the following Lemma 17 in [6]:
Lemma 1. There exist exactly four irreducible quadratic surfaces $S_{i}(0 \leq i \leq$ 3) such that each S_{i} has a singular point and contains C. Let Q_{i} be the unique singular point of S_{i}. Then the four points are not coplanar.

The other one is as follows:
Lemma 2. The $M\left(\rho_{i}\right)(0 \leq i \leq 3)$ has two eigenvalues $\lambda_{i 1}$ and $\lambda_{i 2}$ which belong to one and three independent eigenvectors, respectively. Let Q_{i} be the point in \mathbb{P}^{3} defined by the eigenvector having the eigenvalue $\lambda_{i 1}$. Then, these points coincide with the ones in Lemma 1. Then the line passing through Q_{i}
and $Q_{j}(0 \leq i<j \leq 3)$ is a V_{4}-line. Four points $\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ are not coplanar, so they form a vertex of a tetrahedron T.

Proof. These are checked by direct computations. To find the action of ρ_{i} on V, we have to find the one of ρ_{i} on $x=\wp(z)$ and $y=\wp^{\prime}(z)$. For the purpose we use the addition formula on elliptic curve.

$$
\begin{aligned}
& \rho_{0}\left(1, x^{2}, x, y\right)=\left(1, x^{2}, x,-y\right) \\
& \rho_{1}\left(1, x^{2}, x, y\right)=\left(4 x^{2}-4 x+1, x^{2}+x+\frac{1}{4}, 2 x^{2}-\frac{1}{2}, 2 y\right) \\
& \rho_{2}\left(1, x^{2}, x, y\right)=\left(4 x^{2}+4 x+1, x^{2}-x+\frac{1}{4},-2 x^{2}+\frac{1}{2}, 2 y\right) \\
& \rho_{3}\left(1, x^{2}, x, y\right)=\left(16 x^{2}, 1,-4 x,-4 y\right)
\end{aligned}
$$

The representation matrices are as follows:

$$
M\left(\rho_{0}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad M\left(\rho_{1}\right)=\left(\begin{array}{cccc}
1 & 4 & -4 & 0 \\
\frac{1}{4} & 1 & 1 & 0 \\
-\frac{1}{2} & 2 & 0 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

$$
M\left(\rho_{2}\right)=\left(\begin{array}{cccc}
1 & 4 & 4 & 0 \\
\frac{1}{4} & 1 & -1 & 0 \\
\frac{1}{2} & -2 & 0 & 0 \\
0 & 0 & 0 & -2
\end{array}\right) \quad M\left(\rho_{3}\right)=\left(\begin{array}{cccc}
0 & 16 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & -4
\end{array}\right)
$$

Eigenvalues λ and eigenvectors of $M(\rho)$ are as foloows:
$M\left(\rho_{0}\right) \lambda=-1:(0,0,0,1) \lambda=1:(1,0,0,0),(0,1,0,0),(0,0,1,0)$
$M\left(\rho_{1}\right) \lambda=-2:(4,-1,2,0) \lambda=2:(1,0,-1 / 2,0),(0,1,1,0),(0,0,0,1)$
$M\left(\rho_{2}\right) \lambda=-2:(4,-1,-2,0) \lambda=2:(4,0,1,0),(0,1,-1,0),(0,0,0,1)$
$M\left(\rho_{3}\right) \lambda=4:(4,1,0,0) \lambda=-4:(4,-1,0,0),(0,0,1,0),(0,0,0,1)$

Similarly we can find Z_{4}-lines by the following calculations:

$$
\left.\begin{array}{rl}
\sigma_{0}\left(1, x^{2}, x, y\right)= & \left(1, x^{2},-x, i y\right) \\
\sigma_{1}\left(1, x^{2}, x, y\right)= & \left(16 x^{2}, 1,4 x, 4 i x\right) \\
\sigma_{2}\left(1, x^{2}, x, y\right)= & \left(-2 y+\sqrt{2}(i-1) x^{2}-\sqrt{2}(1+i) x-\frac{\sqrt{2}(i-1)}{4},\right. \\
& -\frac{1}{2} y-\frac{\sqrt{2}(i-1)}{4} x^{2}+\frac{\sqrt{2}(i+1)}{4} x+\frac{\sqrt{2}(i-1)}{16}, \\
& \left.\frac{\sqrt{2}+\sqrt{2} i}{2} x^{2}-\frac{\sqrt{2} i-\sqrt{2}}{2} x-\frac{\sqrt{2}+\sqrt{2} i}{8}, 2 x^{2}+\frac{1}{2}\right) \\
\sigma_{3}\left(1, x^{2}, x, y\right)= & \left(4 \sqrt{2} i y-(1+i)\left(4 x^{2}+4 i x-1\right), \frac{1}{4}\left(4 \sqrt{2} i y+(1+i)\left(4 x^{2}+4 i x-1\right)\right),\right. \\
& \left.-\frac{i-1}{2}\left(4 x^{2}-4 i x-1\right),-\sqrt{2}\left(4 x^{2}+1\right)\right) \\
\sigma_{4}\left(1, x^{2}, x, y\right)= & \left(-2 \sqrt{2}(1+i) y-4 i x^{2}-4 x+i,\right. \\
& \frac{-1-i}{\sqrt{2}} y+i x^{2}+x-\frac{i}{4}, 2 x^{2}+2 i x-\frac{1}{2}, \\
& \left.-2 \sqrt{2}(1+i) x^{2}-\frac{1+i}{\sqrt{2}}\right) \\
\sigma_{5}\left(1, x^{2}, x, y\right)= & \left(2 \sqrt{2}(1+i) y-4 i x^{2}-4 x+i,\right.
\end{array}\right)
$$

Eigenvalues λ and eigenvectors of $M(\sigma)$ are as follows:

$$
\begin{aligned}
& M\left(\sigma_{0}\right) \lambda=-1:(4,-1,0,0) \lambda=1:(4,1,0,0),(0,0,1,0), \lambda=i(0,0,0,1) \\
& M\left(\sigma_{1}\right) \lambda=-1:(4,-1,0,0) \lambda=1:(4,1,0,0),(0,0,1,0), \lambda=i(0,0,0,1) \\
& M\left(\sigma_{2}\right) \lambda=i:(4,-1,-2,0) \lambda=1:(4 \sqrt{2}, 0, \sqrt{2}, 2 i),(0,1,-1, \sqrt{2} i), \lambda= \\
& -1(4 \sqrt{2}, \sqrt{2}, 0,-4 i) \\
& M\left(\sigma_{3}\right) \lambda=i:(4,-1,-2,0) \lambda=1:(4 \sqrt{2}, 0, \sqrt{2},-2 i),(0,1,-1,-\sqrt{2} i), \lambda= \\
& -1(4 \sqrt{2}, \sqrt{2}, 0,4 i) \\
& M\left(\sigma_{4}\right) \lambda=-2-2 i:(4 \sqrt{2}, \sqrt{2}, 0,4) \lambda=2+2 i:(4 \sqrt{2}, 0,-\sqrt{2},-2),(0,1,1,-\sqrt{2}), \lambda= \\
& -2+2 i(4,-1,2,0) \\
& M\left(\sigma_{5}\right) \lambda=-2-2 i:(4 \sqrt{2}, \sqrt{2}, 0,-4) \lambda=2+2 i:(4 \sqrt{2}, 0,-\sqrt{2}, 2),(0,1,1, \sqrt{2}), \lambda= \\
& -2+2 i(4,-1,2,0) \\
& M\left(\sigma_{6}\right) \lambda=2 i:(4,-1,2 i, 0) \lambda=-2 i:(4,-1,-2,0),(0,0,0,1), \lambda= \\
& 2(4,1,0,0) \\
& M\left(\sigma_{7}\right) \lambda=2 i:(4,-1,-2 i, 0) \lambda=-2 i:(4,-1,-2 i, 0),(0,0,0,1), \lambda= \\
& 2(4,1,0,0)
\end{aligned}
$$

Corollary 4. (1) In case $J \neq 12^{3}, \mathcal{G}_{0}=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle \cong Z_{2} \times Z_{2} \times Z_{2}$. an example of the curve with this group is given in [4]

$$
\left(4 y^{4}+5 x y^{2}-1\right)^{2}=x y^{2}\left(x+8 y^{2}\right)^{2} .
$$

(2) In cse $J=12^{3}$ we can show $\mathcal{G}=\left\langle\sigma_{0}, \sigma_{2}, \sigma_{6}\right\rangle$. Putting

$$
\alpha(z)=z+\frac{1}{2}, \quad \beta(z)=z+\frac{1+i}{4},
$$

we have $\langle\alpha, \beta\rangle \cong Z_{2} \times Z_{4}$ and

$$
\mathcal{G} \cong\langle\alpha, \beta\rangle \rtimes\left\langle\sigma_{0}\right\rangle
$$

It is easy to see that \mathcal{G}_{0} is a normal subgroup of \mathcal{G}. In particular $|\mathcal{G}|=32$ and \mathcal{G} is called an elliptic exceptional group $E(2,2,4)$ in $[4]$. Furthermore this group is appear as the group by the embedding of degree 32 of the elliptic curve $j(E)=1$.

References

1. C. Duyaguit and H. Yoshihara, Galois lines for normal elliptic space curvea, Algebra Colloquium, 12 (2005), 205-212.
2. J. Harris, Galois groups of enumerative problems, Duke Math. J., 46 (1979), 685-724.
3. M. Kanazawa, T. Takahashi and H. Yoshihara, The group generated by automorphism belonging to Galois points of the quartic surface, Nihonkai Math. J., 12 (2001), 89-99.
4. M. Kanazawa and H. Yoshihara, Galois group at Galois point for genus-one curve, Int. J. Algebra, 5 (2011), 1161-1174.
5. H. Yoshihara, Galois embedding of algebraic variety and its application to abelian surface, Rend. Sem. Mat. Univ. Padova, 117 (2007), 69-86
6. H. Yoshihara, Galois lines for normal elliptic space curves, II, Algebra Colloquium, 19 (2012), no.spec 01, 867-876

Graduate School of Science and Technology,, Niigata University Nifgata 950-2181, Japan and, Department of Mathematics, Faculty of Science,, Niigata University, Niigata 950-2181, Japan

E-mail address: mi_kana@js3.so-net.ne.jp and yosihara@math.sc.niigata-u.ac.jp

[^0]: Key words and phrases. Galois point, genus-one curve, Galois group.

