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Abstract. We show the arrangement of V4 and Z4-lines for the linearly
normal space elliptic curve with j(E) = 1. As a corollary, we show that
each irreducible quartic curve with genus one has at most two Galois points.

1. Introduction

We have been studying Galois embedding of algebraic varieties [5], in par-
ticular, of elliptic curves E. In this case, by Lemma 8 in [6] we can assume the
embedding is associated with the complete linear system |nP0| for some n ≥ 3,
where P0 ∈ E. Let fn : E ↪→ Pn−1 be the embedding and put Cn = fn(E).
Then we consider the Galois subspaces, Galois group, the arrangement of Ga-
lois subspaces and etc. for Cn in Pn−1. In the previous papers [1, 6] we have
treated in the case where n = 4 and settled almost all questions. However,
the arrangement of V4 and Z4-lines has not been determined completely for
j(E) = 1, i.e., the curve with an automorphism of order four with a fixed point.
In this article we will complete it. Furthermore, we show the number of Galois
points for an irreducible quartic curve of genus one, which is a correction of
the assertion of Corollary 2 in [6].
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2. Statement of result

Theorem 1. The arrangement of all the Galois lines for C4, where j(C4) = 1,
is illustrated by the union of the following two figures:
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In these figures, • denotes the intersection of V4-lines and ◦ denotes the in-
tersection of a V4-line and a Z4-line. Four points Q0, Q1 Q2 and Q3 are
not coplanar. These points form vertices of a tetrahedron. Let ℓij be the line
passing through Qi and Qj (0 ≤ i < j ≤ 3). Then, all the V4-lines are
ℓ01, ℓ02, ℓ03, ℓ12, ℓ13 and ℓ23. Except these lines, each line is a Z4-line. For
each vertex there exist two Z4-lines passing through it. Two Z4-lines which do
not pass through the same vertex are disioint. A Z4-line meets V4-lines at two
points. One is a vertex Qi of the tetrahedron, we let the other be Rij (which
is indicated by ◦ in the figures), where 0 ≤ i ≤ 3 and j = 1, 2. By taking a
suitable coordinates of P3, we can give the coordinates of Qi and Rij explicitly
as follows, in the following we use the notation i =

√
−1:

Q0 = (0 : 0 : 0 : 1), Q1 = (4 : −1 : 2 : 0), Q2 = (4 : −1 : −2 : 0),
Q3 = (4 : 1 : 0 : 0),
R01 = (0 : 0 : 1 : 0), R02 = (4 : −1 : 0 : 0), R31 = (4 : −1 : 2i : 0),
R32 = (4 : −1 : −2i : 0), R11 = (4 : 1 : 0 : −2

√
2i), R12 = (4 : 1 : 0 : 2

√
2i),
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R21 = (4 : 1 : 0 : 2
√
2), R22 = (4 : 1 : 0 : −2

√
2)

In Corollary 2 in [6] we must asume j(E) ̸= 1. So we correct the corollary
as follows:

Corollary 2. Let Γ be an irreducible quartic curve in P2 and E the normal-
ization of it. Assume the genus of E is one. If j(E) = 1 (resp. ̸= 1), then the
number of Galois points is at most two (resp. one).

In fact, Takahashi found an example of such curves: s4+ s2u2+ t4 = 0. It is
easy to see that the genus of the normalization is one and (s : t : u) = (0 : 1 : 0)
is a Z4-point and (1 : 0 : 0) is a V4-point. We can find many such examples as
follows:

Remark 1. Let Lij and ℓpq be the Z4 and V4-lines passing though Rij, where
0 ≤ i ≤ 3, j = 1, 2 and if i = 0 or 3 (resp. 1 or 2), then (p, q) = (1, 2) (resp.
(0, 3)). Let πij : P3 · · · −→ P2 be the projection with the center Rij. Then,
πij(C4) = Γij is an irreducible quartic curve and the points πij(Lij) and πij(ℓpq)
are Z4 and V4-points, respectively. For example, take the point R = (0 : 0 :
1 : 0) as the projection center. Then, πR(X : Y : Z : W ) = (X : Y : W ). The
Z4-line L : X = Y = 0 and V4-line ℓ : X + 4Y = W = 0 pass through R. The
defining equation of πR(C4) is W

4 = XY (X − 4Y )2, πR(L) = (0 : 0 : 1) and
πR(ℓ) = (−4 : 1 : 0). By the projective change of coordinates

X = X ′ − iY ′, Y = −(X ′ + iY ′)/4

we get the example of Takahashi.

We have an interest in the group generated by the Galois groups associated
with Galois lines [3]. In the current case we have the following:

Corollary 3. Let G be the group generated by the groups associated with the
Galois lines. Then, we have G ∼= (Z2 × Z4)o Z4.

3. Proof

Hereafter we treat only the case j(E) = 1. We use the same notation and
convention as in [6]. Let us recall briefly:

• π : C −→ E = C/L, L = Z+ Zi, i =
√
−1　

• x = ℘(z), y = ℘′(z), ℘-functions with respect to L.
• φ : C −→ C/L ∼−→ E : y2 = 4x3 − x
• Pα := φ(α) ∈ E, (α ∈ C), in particular, P0 = φ(0)
• + denotes the sum of complex numbers α + β in C and at the same
time the sum of divisors Pα + Pβ on E

• ∼ : linear equivalence
• Note that Pα + Pβ ∼ Pα+β + P0 holds true.
• V4 : Klein’s four group
• Zn : cyclic group of order n
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• ⟨· · · ⟩ : the group generated by · · ·
Since the embedding is associated with |4P0|, we can assume it is given by

f = f4 : E −→ P3, f(x, y) = (1 : x2 : x : y)

Put C = f(E). The V4-lines have been determined in [6]. Recall that the Ga-
lois group associated with V4-line is ⟨ρi, ρj⟩ for some i, j where 0 ≤ i < j ≤ 3.
Let σ be a complex representation of a generator of the group associated with
Z4-line. As we see in the proof of Lemma 20 in [6], σ can be expressed as σ(z) =
iz+(m+ni)/4, where (m,n) = (0, 0), (2, 2), (3, 1), (1, 3), (1, 1), (3, 3), (2, 0)
or (0, 2). So we put as follows:

(0) σ0(z) = iz (1) σ1(z) = iz +
1 + i

2

(2) σ2(z) = iz +
3 + i

4
(3) σ3(z) = iz +

1 + 3i

4

(4) σ4(z) = iz +
1 + i

4
(5) σ5(z) = iz +

3 + 3i

4

(6) σ6(z) = iz +
1

2
(7) σ7(z) = iz +

i

2
Furthermore we put

ρ0 = σ2
0, ρ1 = σ2

2, ρ2 = σ2
4 ρ3 = σ2

6 = σ2
7.

Note that

σ2
0 ≡ σ2

1(modL), σ2
2 ≡ σ2

3(modL), σ2
4 ≡ σ2

5(modL) σ2
6 ≡ σ2

7(modL).
and

ρ0(z) = −z, ρ1(z) = −z +
1

2
, ρ2(z) = −z +

i

2
, ρ3(z) = −z +

1 + i

2
.

Let V be the vector space spanned by {1, x2, x, y} over C. If σ is an element
of the Galois group associated with a Galois line ℓ, then it induces a linear
transformation M(σ) of V . The M(σ) defines a projective transformation,
which is denoted by the same letter. It has the following properties:

(1) Some eigenvalue belongs to at least two independent eigenvectors.
(2) M(σ)(ℓ) = ℓ, i.e., M(ℓ) induces an automorphism of ℓ ∼= P1.

There are two characterizations of the vertices, one is the following Lemma
17 in [6]:

Lemma 1. There exist exactly four irreducible quadratic surfaces Si ( 0 ≤ i ≤
3 ) such that each Si has a singular point and contains C. Let Qi be the unique
singular point of Si. Then the four points are not coplanar.

The other one is as follows:

Lemma 2. The M(ρi) (0 ≤ i ≤ 3) has two eigenvalues λi1 and λi2 which
belong to one and three independent eigenvectors, respectively. Let Qi be the
point in P3 defined by the eigenvector having the eigenvalue λi1. Then, these
points coincide with the ones in Lemma 1. Then the line passing through Qi
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and Qj (0 ≤ i < j ≤ 3) is a V4-line. Four points {Q1, Q2, Q3, Q4} are not
coplanar, so they form a vertex of a tetrahedron T .

Proof. These are checked by direct computations. To find the action of ρi on
V , we have to find the one of ρi on x = ℘(z) and y = ℘′(z). For the purpose
we use the addition formula on elliptic curve.

ρ0(1, x
2, x, y) = (1, x2, x,−y)

ρ1(1, x
2, x, y) = (4x2 − 4x+ 1, x2 + x+ 1

4
, 2x2 − 1

2
, 2y)

ρ2(1, x
2, x, y) = (4x2 + 4x+ 1, x2 − x+ 1

4
,−2x2 + 1

2
, 2y)

ρ3(1, x
2, x, y) = (16x2, 1,−4x,−4y)

The representation matrices are as follows:

M(ρ0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 M(ρ1) =


1 4 −4 0
1
4

1 1 0
−1

2
2 0 0

0 0 0 2



M(ρ2) =


1 4 4 0
1
4

1 −1 0
1
2

−2 0 0
0 0 0 −2

 M(ρ3) =


0 16 0 0
1 0 0 0
0 0 −4 0
0 0 0 −4



Eigenvalues λ and eigenvectors of M(ρ) are as foloows:
M(ρ0) λ = −1 : (0, 0, 0, 1) λ = 1 : (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)
M(ρ1) λ = −2 : (4,−1, 2, 0) λ = 2 : (1, 0,−1/2, 0), (0, 1, 1, 0), (0, 0, 0, 1)
M(ρ2) λ = −2 : (4,−1,−2, 0) λ = 2 : (4, 0, 1, 0), (0, 1,−1, 0), (0, 0, 0, 1)
M(ρ3) λ = 4 : (4, 1, 0, 0) λ = −4 : (4,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

�

Similarly we can find Z4-lines by the following calculations:
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σ0(1, x
2, x, y) = (1, x2,−x, iy)

σ1(1, x
2, x, y) = (16x2, 1, 4x, 4ix)

σ2(1, x
2, x, y) = (−2y +

√
2(i− 1)x2 −

√
2(1 + i)x−

√
2(i−1)
4

,

−1
2
y −

√
2(i−1)
4

x2 +
√
2(i+1)
4

x+
√
2(i−1)
16

,√
2+

√
2i

2
x2 −

√
2i−

√
2

2
x−

√
2+

√
2i

8
, 2x2 + 1

2
)

σ3(1, x
2, x, y) = (4

√
2iy − (1 + i)(4x2 + 4ix− 1), 1

4
(4
√
2iy + (1 + i)(4x2 + 4ix− 1)),

i−1
2
(4x2 − 4ix− 1), −

√
2(4x2 + 1))

σ4(1, x
2, x, y) = (−2

√
2(1 + i)y − 4ix2 − 4x+ i,

−1−i√
2
y + ix2 + x− i

4
, 2x2 + 2ix− 1

2
,

−2
√
2(1 + i)x2 − 1+i√

2
)

σ5(1, x
2, x, y) = (2

√
2(1 + i)y − 4ix2 − 4x+ i,

1+i√
2y

+ ix2 + x− i
4
, 2x2 + 2ix− 1

2
, −1+i√

2
(4x2 + 1))

σ6(1, x
2, x, y) = (4x2 + 4x+ 1, x2 − x+ 1

4
, 2x2 − 1

2
,−2iy)

σ7(1, x
2, x, y) = (4x2 − 4x+ 1, x2x+ 1

4
,−2x2 + 1

2
,−2iy)

M(σ0) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 i

 M(σ1) =


0 4 0 0
1
4

0 0 0
0 0 1 0
0 0 0 i



M(σ2) =


i+1
4

−i− 1 1− i −
√
2i

− i+1
16

i+1
4

i−1
4

− i
2
√
2

− i−1
8

i−1
2

i+1
2

0
i

2
√
2

√
2i 0 0



M(σ3) =


1 + i −4(1 + i) 4(1− i) 4

√
2i

−1+i
4

1 + i i− 1
√
2i

1−i
2

−2(1− i) 2(1 + i) 0

−
√
2i −4

√
2 0 0



M(σ4) =


i −4i −4 −2

√
2(1 + i)

− i
4

i 1 −1+i√
2

−1
2

2 2i 0

−1+i√
2

−2
√
2(1 + i) 0 0



M(σ5) =


i −4i −4 2v(1 + i)
− i

4
i 1 1+i√

2

−1
2

2 2i 0
1+i√

2
2
√
2(1 + i) 0 0



M(σ6) =


1 4 4 0
1
4

1 −1 0
−1

2
2 0 0

0 0 0 −2i

 M(σ7) =


1 4 −4 0
1
4

1 1 0
1
2

−2 0 0
0 0 0 −2i
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Eigenvalues λ and eigenvectors of M(σ) are as follows:
M(σ0) λ = −1 : (4,−1, 0, 0) λ = 1 : (4, 1, 0, 0), (0, 0, 1, 0), λ = i (0, 0, 0, 1)
M(σ1) λ = −1 : (4,−1, 0, 0) λ = 1 : (4, 1, 0, 0), (0, 0, 1, 0), λ = i (0, 0, 0, 1)
M(σ2) λ = i : (4,−1,−2, 0) λ = 1 : (4

√
2, 0,

√
2, 2i), (0, 1,−1,

√
2i), λ =

−1 (4
√
2,
√
2, 0,−4i)

M(σ3) λ = i : (4,−1,−2, 0) λ = 1 : (4
√
2, 0,

√
2,−2i), (0, 1,−1,−

√
2i), λ =

−1 (4
√
2,
√
2, 0, 4i)

M(σ4) λ = −2−2i : (4
√
2,
√
2, 0, 4) λ = 2+2i : (4

√
2, 0,−

√
2,−2), (0, 1, 1,−

√
2), λ =

−2 + 2i (4,−1, 2, 0)
M(σ5) λ = −2−2i : (4

√
2,
√
2, 0,−4) λ = 2+2i : (4

√
2, 0,−

√
2, 2), (0, 1, 1,

√
2), λ =

−2 + 2i (4,−1, 2, 0)
M(σ6) λ = 2i : (4,−1, 2i, 0) λ = −2i : (4,−1,−2, 0), (0, 0, 0, 1), λ =

2 (4, 1, 0, 0)
M(σ7) λ = 2i : (4,−1,−2i, 0) λ = −2i : (4,−1,−2i, 0), (0, 0, 0, 1), λ =

2 (4, 1, 0, 0)

Corollary 4. (1) In case J ̸= 123, G0 = ⟨ρ0, ρ1, ρ2⟩ ∼= Z2 × Z2 × Z2. an
example of the curve with this group is given in [4]

(4y4 + 5xy2 − 1)2 = xy2(x+ 8y2)2.

(2) In cse J = 123 we can show G = ⟨σ0, σ2, σ6⟩. Putting

α(z) = z +
1

2
, β(z) = z +

1 + i

4
,

we have ⟨α, β⟩ ∼= Z2 × Z4 and

G ∼= ⟨α, β⟩o ⟨σ0⟩

It is easy to see that G0 is a normal subgroup of G. In particular |G| = 32
and G is called an elliptic exceptional group E(2, 2, 4) in [4]. Further-
more this group is appear as the group by the embedding of degree 32
of the elliptic curve j(E) = 1.
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