Introduction to Galois Point

Hisao YOSHIHARA

Niigata University
May 28, 2019

The contents of this talk are

(2) introduction to Galois Point

The contents of this talk are
(1) transcendental extension of field
(2) introduction to Galois Point (3) examples and theorems.

The contents of this talk are
(1) transcendental extension of field
(2) introduction to Galois Point
(3) examples and theorems.

The contents of this talk are
(1) transcendental extension of field
(2) introduction to Galois Point
(3) examples and theorems.

Preliminary Remark 1

First, recall the following:

Preliminary Remark 1

First, recall the following:
it is well-known that

Preliminary Remark 1

First, recall the following:
it is well-known that

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

Preliminary Remark 1

First, recall the following:
it is well-known that

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

can be expressed by elementary function $\left(=\sin ^{-1} x\right)$, but

Preliminary Remark 1

First, recall the following:
it is well-known that

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

can be expressed by elementary function $\left(=\sin ^{-1} x\right)$, but

$$
\int \frac{1}{\sqrt{1-x^{3}}} d x
$$

Preliminary Remark 1

First, recall the following:
it is well-known that

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

can be expressed by elementary function $\left(=\sin ^{-1} x\right)$, but

$$
\int \frac{1}{\sqrt{1-x^{3}}} d x
$$

can not.
What is the essential difference between them?

Preliminary Remark 1

First, recall the following:
it is well-known that

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

can be expressed by elementary function $\left(=\sin ^{-1} x\right)$, but

$$
\int \frac{1}{\sqrt{1-x^{3}}} d x
$$

can not.
Why ?
What is the essential difference between them?

Preliminary Remark 1

First, recall the following:
it is well-known that

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

can be expressed by elementary function $\left(=\sin ^{-1} x\right)$, but

$$
\int \frac{1}{\sqrt{1-x^{3}}} d x
$$

can not.
Why ?
What is the essential difference between them?

Preliminary Remark 2

The difference is

Preliminary Remark 2

The difference is
the former is given by $y=\sqrt{1-x^{2}}$, i.e., $x^{2}+y^{2}=1$ and

Preliminary Remark 2

The difference is
the former is given by $y=\sqrt{1-x^{2}}$, i.e., $x^{2}+y^{2}=1$ and the latter is given by $y=\sqrt{1-x^{3}}$, i.e., $x^{3}+y^{2}=1$.

Preliminary Remark 2

The difference is
the former is given by $y=\sqrt{1-x^{2}}$, i.e., $x^{2}+y^{2}=1$ and the latter is given by $y=\sqrt{1-x^{3}}$, i.e., $x^{3}+y^{2}=1$.
The former curve can be parametrized by rational functions

Whereas, the latter cannot.

Preliminary Remark 2

The difference is
the former is given by $y=\sqrt{1-x^{2}}$, i.e., $x^{2}+y^{2}=1$ and the latter is given by $y=\sqrt{1-x^{3}}$, i.e., $x^{3}+y^{2}=1$.
The former curve can be parametrized by rational functions

$$
x=\frac{1-t^{2}}{1+t^{2}}, \quad y=\frac{2 t}{1+t^{2}}
$$

Whereas, the latter cannot.

Preliminary Remark 2

The difference is
the former is given by $y=\sqrt{1-x^{2}}$, i.e., $x^{2}+y^{2}=1$ and the latter is given by $y=\sqrt{1-x^{3}}$, i.e., $x^{3}+y^{2}=1$.
The former curve can be parametrized by rational functions

$$
x=\frac{1-t^{2}}{1+t^{2}}, \quad y=\frac{2 t}{1+t^{2}}
$$

Whereas, the latter cannot.
In fact, the inverse of the integral is an elliptic function.
Let us examine this in more detail.

Preliminary Remark 2

The difference is
the former is given by $y=\sqrt{1-x^{2}}$, i.e., $x^{2}+y^{2}=1$ and the latter is given by $y=\sqrt{1-x^{3}}$, i.e., $x^{3}+y^{2}=1$.
The former curve can be parametrized by rational functions

$$
x=\frac{1-t^{2}}{1+t^{2}}, \quad y=\frac{2 t}{1+t^{2}}
$$

Whereas, the latter cannot.
In fact, the inverse of the integral is an elliptic function.

Preliminary Remark 2

The difference is
the former is given by $y=\sqrt{1-x^{2}}$, i.e., $x^{2}+y^{2}=1$ and the latter is given by $y=\sqrt{1-x^{3}}$, i.e., $x^{3}+y^{2}=1$.
The former curve can be parametrized by rational functions

$$
x=\frac{1-t^{2}}{1+t^{2}}, \quad y=\frac{2 t}{1+t^{2}}
$$

Whereas, the latter cannot.
In fact, the inverse of the integral is an elliptic function.
Let us examine this in more detail.

Preliminary Remark 3

Consider the circle $x^{2}+y^{2}=1$ and the lines $y=t(x+1)$ passing through $(-1,0)$

Preliminary Remark 3

Consider the circle $x^{2}+y^{2}=1$ and the lines $y=t(x+1)$ passing through $(-1,0)$
$P(-1,0), Q\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right), R(0, t)$

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis and $\pi_{P}(Q)=R$. This mapping is one of a projection.

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis and $\pi_{P}(Q)=R$. This mapping is one of a projection. This is a $1: 1$ correspondence and induces an isomorphism between C and projective line.

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis and $\pi_{P}(Q)=R$. This mapping is one of a projection.
This is a $1: 1$ correspondence and induces an isomorphism between C and projective line. So the circle can be parametrized by a line.

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis and $\pi_{P}(Q)=R$. This mapping is one of a projection.
This is a $1: 1$ correspondence and induces an isomorphism between C and projective line.
So the circle can be parametrized by a line.
The function field of circle is the quotient field of the domain $k[x, y] /\left(x^{2}+y^{2}-1\right)$.

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis and $\pi_{P}(Q)=R$. This mapping is one of a projection.
This is a $1: 1$ correspondence and induces an isomorphism between C and projective line.
So the circle can be parametrized by a line.
The function field of circle is the quotient field of the domain $k[x, y] /\left(x^{2}+y^{2}-1\right)$.
It is rational, i.e., it is isomorphic to $k(t)$, i.e., purely transcendental extension over a ground field.

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis and $\pi_{P}(Q)=R$. This mapping is one of a projection.
This is a $1: 1$ correspondence and induces an isomorphism between C and projective line.
So the circle can be parametrized by a line.
The function field of circle is the quotient field of the domain $k[x, y] /\left(x^{2}+y^{2}-1\right)$.
It is rational, i.e., it is isomorphic to $k(t)$, i.e., purely transcendental extension over a ground field.
Indeed, $k\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)=k(t)$, so the circle is a rational curve.

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis and $\pi_{P}(Q)=R$. This mapping is one of a projection.
This is a $1: 1$ correspondence and induces an isomorphism between C and projective line.
So the circle can be parametrized by a line.
The function field of circle is the quotient field of the domain $k[x, y] /\left(x^{2}+y^{2}-1\right)$.
It is rational, i.e., it is isomorphic to $k(t)$, i.e., purely transcendental extension over a ground field.
Indeed, $k\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)=k(t)$, so the circle is a rational curve. By the similar way we can parametrize quadratic curves by rational functions.

Preliminary Remark 4

There is a mapping $\pi_{P}: C \backslash\{P\} \longrightarrow L$, where L is the y-axis and $\pi_{P}(Q)=R$. This mapping is one of a projection.
This is a $1: 1$ correspondence and induces an isomorphism between C and projective line.
So the circle can be parametrized by a line.
The function field of circle is the quotient field of the domain $k[x, y] /\left(x^{2}+y^{2}-1\right)$.
It is rational, i.e., it is isomorphic to $k(t)$, i.e., purely transcendental extension over a ground field.
Indeed, $k\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)=k(t)$, so the circle is a rational curve. By the similar way we can parametrize quadratic curves by rational functions.
So the quadratic curve is a rational curve.,

Preliminary Remark 5

The curve $x^{3}+y^{2}=1$ can not be parametrized by any rational function.

Preliminary Remark 5

The curve $x^{3}+y^{2}=1$ can not be parametrized by any rational function.
(Prove this as an exercise!)
Note that rational or not is not determined by the degree. It's determined by genus of the curve.

Preliminary Remark 5

The curve $x^{3}+y^{2}=1$ can not be parametrized by any rational function.
(Prove this as an exercise!)
Note that rational or not is not determined by the degree.

Preliminary Remark 5

The curve $x^{3}+y^{2}=1$ can not be parametrized by any rational function.
(Prove this as an exercise!)
Note that rational or not is not determined by the degree.
It's determined by genus of the curve.
For example, the curve $y^{2}=x^{2}(x+1)$ is a rational curve,
Indeed, take the projection center at $(0,0)$.

Preliminary Remark 5

The curve $x^{3}+y^{2}=1$ can not be parametrized by any rational function.
(Prove this as an exercise!)
Note that rational or not is not determined by the degree.
It's determined by genus of the curve.
For example, the curve $y^{2}=x^{2}(x+1)$ is a rational curve,

Preliminary Remark 5

The curve $x^{3}+y^{2}=1$ can not be parametrized by any rational function.
(Prove this as an exercise!)
Note that rational or not is not determined by the degree.
It's determined by genus of the curve.
For example, the curve $y^{2}=x^{2}(x+1)$ is a rational curve, Indeed, take the projection center at $(0,0)$.

Preliminary Remark 5

The curve $x^{3}+y^{2}=1$ can not be parametrized by any rational function.
(Prove this as an exercise!)
Note that rational or not is not determined by the degree.
It's determined by genus of the curve.
For example, the curve $y^{2}=x^{2}(x+1)$ is a rational curve, Indeed, take the projection center at $(0,0)$.
Namely consider the line $y=t x$ passing through $(0,0)$.

Preliminary Remark 5

The curve $x^{3}+y^{2}=1$ can not be parametrized by any rational function.
(Prove this as an exercise!)
Note that rational or not is not determined by the degree.
It's determined by genus of the curve.
For example, the curve $y^{2}=x^{2}(x+1)$ is a rational curve, Indeed, take the projection center at $(0,0)$.
Namely consider the line $y=t x$ passing through $(0,0)$.
Then we have $x=t^{2}-1, y=t\left(t^{2}-1\right)$.

Transcendental Extension 1

Please allow me to state my personal interest.

Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.

Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.
Suppose K is a field finitely generated over a field k.

Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.
Suppose K is a field finitely generated over a field k.
If the extension K / k is algebraic, then there are several methods to study the property of the extension,

Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.
Suppose K is a field finitely generated over a field k.
If the extension K / k is algebraic, then there are several methods to study the property of the extension, for example, degree, Galois theory etc.
ones.
How to study the extension K / k ?

Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.
Suppose K is a field finitely generated over a field k.
If the extension K / k is algebraic, then there are several methods to study the property of the extension, for example, degree, Galois theory etc. However, if is is transcendental, then there are few suitable ones.

Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.
Suppose K is a field finitely generated over a field k.
If the extension K / k is algebraic, then there are several methods to study the property of the extension, for example, degree, Galois theory etc. However, if is is transcendental, then there are few suitable ones.
How to study the extension K / k ?

Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.
Suppose K is a field finitely generated over a field k.
If the extension K / k is algebraic, then there are several methods to study the property of the extension, for example, degree, Galois theory etc. However, if is is transcendental, then there are few suitable ones.
How to study the extension K / k ?
I think purely transcendental extension is the most simple one.

Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.
Suppose K is a field finitely generated over a field k.
If the extension K / k is algebraic, then there are several methods to study the property of the extension, for example, degree, Galois theory etc. However, if is is transcendental, then there are few suitable ones.
How to study the extension K / k ?
I think purely transcendental extension is the most simple one. So, I take the purely transcendental extension as the starting point.

Transcendental Extension 2

Let n be the transcendental degree.

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m},
which has the following properties

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m}, which has the following properties:

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m}, which has the following properties:
(1) K_{m} is an intermediate field between K and k,

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m}, which has the following properties:
(1) K_{m} is an intermediate field between K and k,
(2) and purely trans. ext. of k with the trans. degree n,

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m}, which has the following properties:
(1) K_{m} is an intermediate field between K and k,
(2) and purely trans. ext. of k with the trans. degree n,
(3) there is no field between K and K_{m}.

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m}, which has the following properties:
(1) K_{m} is an intermediate field between K and k,
(2) and purely trans. ext. of k with the trans. degree n,
(3) there is no field between K and K_{m}.

Then, we consider the algebraic extension K / K_{m}

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m}, which has the following properties:
(1) K_{m} is an intermediate field between K and k,
(2) and purely trans. ext. of k with the trans. degree n,
(3) there is no field between K and K_{m}.

Then, we consider the algebraic extension K / K_{m} However, there is an inconvenient point.
maximal rational subfields:

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m}, which has the following properties:
(1) K_{m} is an intermediate field between K and k,
(2) and purely trans. ext. of k with the trans. degree n,
(3) there is no field between K and K_{m}.

Then, we consider the algebraic extension K / K_{m} However, there is an inconvenient point.
In fact, even if $n=1$ and $K=k(x)$, there are many maximal rational subfields:

Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield K_{m}, which has the following properties:
(1) K_{m} is an intermediate field between K and k,
(2) and purely trans. ext. of k with the trans. degree n,
(3) there is no field between K and K_{m}.

Then, we consider the algebraic extension K / K_{m}
However, there is an inconvenient point.
In fact, even if $n=1$ and $K=k(x)$, there are many
maximal rational subfields:
$k\left(x^{2}\right), k\left(x^{3}\right), \ldots, k\left(x^{p}\right), \ldots$ (p is a prime number)

Irrationality

So, we use the notion: the degree of irrationality, which is defined as follows:

Irrationality

So, we use the notion: the degree of irrationality, which is defined as follows:
$\min \left\{\left[K: K_{m}\right]: K_{m}\right.$ is a maximal rational subfield. $\}$

Irrationality

So, we use the notion: the degree of irrationality, which is defined as follows:
$\min \left\{\left[K: K_{m}\right]: K_{m}\right.$ is a maximal rational subfield. $\}$ We denote this number by $\operatorname{irr}(K / k)$ or $\operatorname{irr}(K)$.

Irrationality

So, we use the notion: the degree of irrationality, which is defined as follows:
$\min \left\{\left[K: K_{m}\right]: K_{m}\right.$ is a maximal rational subfield. $\}$
We denote this number by $\operatorname{irr}(K / k)$ or $\operatorname{irr}(K)$.
The field K is rational if and only if $\operatorname{irr}(K)=1$.
g-maximal rational subfield.

Irrationality

So, we use the notion: the degree of irrationality, which is defined as follows:
$\min \left\{\left[K: K_{m}\right]: K_{m}\right.$ is a maximal rational subfield. $\}$
We denote this number by $\operatorname{irr}(K / k)$ or $\operatorname{irr}(K)$.
The field K is rational if and only if $\operatorname{irr}(K)=1$.
Maximal rational subfield F with $[K: F]=\operatorname{irr}(K)$ is called g-maximal rational subfield.

Irrationality

So, we use the notion: the degree of irrationality, which is defined as follows:
$\min \left\{\left[K: K_{m}\right]: K_{m}\right.$ is a maximal rational subfield. $\}$
We denote this number by $\operatorname{irr}(K / k)$ or $\operatorname{irr}(K)$.
The field K is rational if and only if $\operatorname{irr}(K)=1$.
Maximal rational subfield F with $[K: F]=\operatorname{irr}(K)$ is called g-maximal rational subfield.
For example, for the elliptic function field
$k(x, y), y^{2}=x^{3}+a x+b, 4 a^{3}+27 b^{2} \neq 0$

Irrationality

So, we use the notion: the degree of irrationality, which is defined as follows:
$\min \left\{\left[K: K_{m}\right]: K_{m}\right.$ is a maximal rational subfield. $\}$
We denote this number by $\operatorname{irr}(K / k)$ or $\operatorname{irr}(K)$.
The field K is rational if and only if $\operatorname{irr}(K)=1$.
Maximal rational subfield F with $[K: F]=\operatorname{irr}(K)$ is called g-maximal rational subfield.
For example, for the elliptic function field
$k(x, y), y^{2}=x^{3}+a x+b, 4 a^{3}+27 b^{2} \neq 0$
$\operatorname{irr}(k(x, y))=2$ and $k(x)$ is a g-maximal rational subfield,

Irrationality

So, we use the notion: the degree of irrationality, which is defined as follows:
$\min \left\{\left[K: K_{m}\right]: K_{m}\right.$ is a maximal rational subfield. $\}$
We denote this number by $\operatorname{irr}(K / k)$ or $\operatorname{irr}(K)$.
The field K is rational if and only if $\operatorname{irr}(K)=1$.
Maximal rational subfield F with $[K: F]=\operatorname{irr}(K)$ is called g-maximal rational subfield.
For example, for the elliptic function field
$k(x, y), y^{2}=x^{3}+a x+b, 4 a^{3}+27 b^{2} \neq 0$
$\operatorname{irr}(k(x, y))=2$ and $k(x)$ is a g-maximal rational subfield, $k(y)$ is a maximal rational field but not a g-maximal one.

Algebraic Function Field 1

I mention one more fact
On an algebraic variety there exist natural functions.
If R is a coordinates ring of an affine part, then an element of the quotient field of R is the natural function.

Algebraic Function Field 1

I mention one more fact
On an algebraic variety there exist natural functions.
the quotient field of R is the natural function.

Algebraic Function Field 1

I mention one more fact
On an algebraic variety there exist natural functions.
If R is a coordinates ring of an affine part, then an element of the quotient field of R is the natural function.

The transcendence degree coincides with the dimension of the

Algebraic Function Field 1

I mention one more fact
On an algebraic variety there exist natural functions.
If R is a coordinates ring of an affine part, then an element of the quotient field of R is the natural function.
The field is an algebraic function field.

Algebraic Function Field 1

I mention one more fact
On an algebraic variety there exist natural functions.
If R is a coordinates ring of an affine part, then an element of the quotient field of R is the natural function.
The field is an algebraic function field.
The transcendence degree coincides with the dimension of the variety.
where V and W are algebraic varieties

Algebraic Function Field 1

I mention one more fact
On an algebraic variety there exist natural functions.
If R is a coordinates ring of an affine part, then an element of the quotient field of R is the natural function.
The field is an algebraic function field.
The transcendence degree coincides with the dimension of the variety.
A field extension L / K corresponds to a dominant rational map
$f: V \rightarrow W$,
where V and W are algebraic varieties
with function fields L and K, respectively.

Algebraic Function Field 1

I mention one more fact
On an algebraic variety there exist natural functions.
If R is a coordinates ring of an affine part, then an element of the quotient field of R is the natural function.
The field is an algebraic function field.
The transcendence degree coincides with the dimension of the variety.
A field extension L / K corresponds to a dominant rational map
$f: V \rightarrow W$,
where V and W are algebraic varieties

Algebraic Function Field 1

I mention one more fact
On an algebraic variety there exist natural functions.
If R is a coordinates ring of an affine part, then an element of
the quotient field of R is the natural function.
The field is an algebraic function field.
The transcendence degree coincides with the dimension of the variety.
A field extension L / K corresponds to a dominant rational map
$f: V \rightarrow W$,
where V and W are algebraic varieties
with function fields L and K, respectively.

Algebraic Function Field 2

If the extension is algebraic, then the morphism is a covering.

Algebraic Function Field 2

If the extension is algebraic, then the morphism is a covering. Moreover, if the extension is Galois, then the covering is Galois.

Algebraic Function Field 2

If the extension is algebraic, then the morphism is a covering. Moreover, if the extension is Galois, then the covering is Galois. So, we can "see" the field extension by the mapping between varieties.

Algebraic Function Field 2

If the extension is algebraic, then the morphism is a covering. Moreover, if the extension is Galois, then the covering is Galois. So, we can "see" the field extension by the mapping between varieties.
For example, for the elliptic function field $k(x, y)$, the extension $k(x, y) / k(x)$ corresponds to

Algebraic Function Field 2

If the extension is algebraic, then the morphism is a covering. Moreover, if the extension is Galois, then the covering is Galois. So, we can "see" the field extension by the mapping between varieties.
For example, for the elliptic function field $k(x, y)$, the extension $k(x, y) / k(x)$ corresponds to the double covering $\pi: E \longrightarrow \mathbb{P}^{1}$, where E is an elliptic curve.

Algebraic Function Field 2

If the extension is algebraic, then the morphism is a covering. Moreover, if the extension is Galois, then the covering is Galois. So, we can "see" the field extension by the mapping between varieties.
For example, for the elliptic function field $k(x, y)$, the extension $k(x, y) / k(x)$ corresponds to the double covering $\pi: E \longrightarrow \mathbb{P}^{1}$, where E is an elliptic curve. The π is a $2: 1$ mapping except at four points where it is $1: 1$, which are branch points.

Motive

I explain the motive of this research.

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra. Commutative ring R corresponds the scheme $\operatorname{Spec}(\mathrm{R})$.

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R corresponds the scheme $\operatorname{Spec}(\mathrm{R})$. So, we can study variety by algebra, and vice versa.

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R corresponds the scheme $\operatorname{Spec}(\mathrm{R})$.
So, we can study variety by algebra, and vice versa.
Let's take up again the elliptic curve $y^{2}=x^{3}+1$.
rational function.
However it is simple by using geometry.

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R corresponds the scheme $\operatorname{Spec}(\mathrm{R})$.
So, we can study variety by algebra, and vice versa.
Let's take up again the elliptic curve $y^{2}=x^{3}+1$.
It is not simple to prove that the curve is parametrized by rational function.
Howevert tis simpe by using geomery.
We have ony to cheok the exs sence of equal form.

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R corresponds the scheme $\operatorname{Spec}(\mathrm{R})$.
So, we can study variety by algebra, and vice versa.
Let's take up again the elliptic curve $y^{2}=x^{3}+1$.
It is not simple to prove that the curve is parametrized by rational function.
However it is simple by using geometry.
In fact, the form $\frac{d x}{2 y}=\frac{d y}{3 x^{2}}$ is a regular 1-form

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R corresponds the scheme $\operatorname{Spec}(\mathrm{R})$.
So, we can study variety by algebra, and vice versa.
Let's take up again the elliptic curve $y^{2}=x^{3}+1$.
It is not simple to prove that the curve is parametrized by rational function.
However it is simple by using geometry.
We have only to check the existence of regular form.

The genus is not zero, so that the curve is not rational

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R corresponds the scheme $\operatorname{Spec}(\mathrm{R})$.
So, we can study variety by algebra, and vice versa.
Let's take up again the elliptic curve $y^{2}=x^{3}+1$.
It is not simple to prove that the curve is parametrized by rational function.
However it is simple by using geometry.
We have only to check the existence of regular form.
In fact, the form $\frac{d x}{2 y}=\frac{d y}{3 x^{2}}$ is a regular 1 -form.

Motive

I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R corresponds the scheme $\operatorname{Spec}(\mathrm{R})$.
So, we can study variety by algebra, and vice versa.
Let's take up again the elliptic curve $y^{2}=x^{3}+1$.
It is not simple to prove that the curve is parametrized by rational function.
However it is simple by using geometry.
We have only to check the existence of regular form.
In fact, the form $\frac{d x}{2 y}=\frac{d y}{3 x^{2}}$ is a regular 1 -form.
The genus is not zero, so that the curve is not rational.

Simile

Before proceeding to the definition of Galois point, I use a simile here.
Very rough consideration before the definition:
Suppose there is a cube in a space. Look at it from several positions by one eye.

Simile

Before proceeding to the definition of Galois point, I use a simile here.
Very rough consideration before the definition:
positions by one eye.
In general we cannot find any symmetry in the figure.

Simile

Before proceeding to the definition of Galois point, I use a simile here.
Very rough consideration before the definition: Suppose there is a cube in a space. Look at it from several positions by one eye.
In general we cannot find any symmetry in the figure. However, at some special points it looks like a regular hexagon or a square.

Simile

Before proceeding to the definition of Galois point, I use a simile here.
Very rough consideration before the definition: Suppose there is a cube in a space. Look at it from several positions by one eye.
In general we cannot find any symmetry in the figure.
or a square.
We seek for such the special points for algebraic curves in the projective plane.

Simile

Before proceeding to the definition of Galois point, I use a simile here.
Very rough consideration before the definition:
Suppose there is a cube in a space. Look at it from several positions by one eye.
In general we cannot find any symmetry in the figure. However, at some special points it looks like a regular hexagon or a square.
We seek for such the special points for algebraic curves in the projective plane.

Simile

Before proceeding to the definition of Galois point, I use a simile here.
Very rough consideration before the definition:
Suppose there is a cube in a space. Look at it from several positions by one eye.
In general we cannot find any symmetry in the figure.
However, at some special points it looks like a regular hexagon
or a square.
We seek for such the special points for algebraic curves in the projective plane.

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero.

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero.
Let C be an irreducible projective plane curve of degree d

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero. Let C be an irreducible projective plane curve of degree d and $k(C)$ the function field.

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero.
Let C be an irreducible projective plane curve of degree d and $k(C)$ the function field.
Let P be a point in the plane \mathbb{P}^{2}

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero.
Let C be an irreducible projective plane curve of degree d and $k(C)$ the function field.
Let P be a point in the plane \mathbb{P}^{2} and consider the projection $\pi_{P}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ with the center P.

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero.
Let C be an irreducible projective plane curve of degree d and $k(C)$ the function field.
Let P be a point in the plane \mathbb{P}^{2} and consider the projection $\pi_{P}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ with the center P. Restricting π_{P} to C, we get a dominant rational map

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero.
Let C be an irreducible projective plane curve of degree d and $k(C)$ the function field.
Let P be a point in the plane \mathbb{P}^{2} and consider the projection $\pi_{P}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ with the center P. Restricting π_{P} to C, we get a dominant rational map $\bar{\pi}_{P}: C \rightarrow \mathbb{P}^{1}$,
where m is the multiplicity of C at P (if $P \notin C$, then we regard m

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero.
Let C be an irreducible projective plane curve of degree d and $k(C)$ the function field.
Let P be a point in the plane \mathbb{P}^{2} and consider the projection $\pi_{P}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ with the center P. Restricting π_{P} to C, we get a dominant rational map $\bar{\pi}_{P}: C \rightarrow \mathbb{P}^{1}$,
which induces a finite extension of fields $\bar{\pi}_{P}^{*}: k\left(\mathbb{P}^{1}\right) \hookrightarrow k(C)$ of degree $d-m$,

Galois Point 1

Hereafter we discuss on the ground field k, which is assumed to be an algebraically closed field of characteristic zero.
Let C be an irreducible projective plane curve of degree d and $k(C)$ the function field.
Let P be a point in the plane \mathbb{P}^{2} and consider the projection $\pi_{P}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ with the center P. Restricting π_{P} to C, we get a dominant rational map $\bar{\pi}_{P}: C \rightarrow \mathbb{P}^{1}$,
which induces a finite extension of fields $\bar{\pi}_{P}^{*}: k\left(\mathbb{P}^{1}\right) \hookrightarrow k(C)$ of degree $d-m$, where m is the multiplicity of C at P (if $P \notin C$, then we regard m to be 0 .)

Galois Point 2

We assume $d-m \geq 3$.

Galois Point 2

We assume $d-m \geq 3$.
If the extension is Galois, we call P a Galois point for C.
outer] Galois point
We denote by $\delta(C)$ and $\delta^{\prime}(C)$ the number of inner and outer
Galois point, respectively.

Galois Point 2

We assume $d-m \geq 3$.
If the extension is Galois, we call P a Galois point for C.
If, moreover, $P \in C$ [resp. $P \notin C$], then we call P an inner [resp. outer] Galois point.

Galois Point 2

We assume $d-m \geq 3$.
If the extension is Galois, we call P a Galois point for C.
If, moreover, $P \in C$ [resp. $P \notin C$], then we call P an inner [resp. outer] Galois point.
We denote by $\delta(C)$ and $\delta^{\prime}(C)$ the number of inner and outer Galois point, respectively.

By definition an element of G induces a birational transformation of C over the projective line \mathbb{P}^{1}.

Galois Point 2

We assume $d-m \geq 3$.
If the extension is Galois, we call P a Galois point for C.
If, moreover, $P \in C$ [resp. $P \notin C$], then we call P an inner [resp. outer] Galois point.
We denote by $\delta(C)$ and $\delta^{\prime}(C)$ the number of inner and outer
Galois point, respectively.
Let $G=G_{p}$ be the Galois group.
transformation of C over the projective line \mathbb{P}^{1}.

Galois Point 2

We assume $d-m \geq 3$.
If the extension is Galois, we call P a Galois point for C.
If, moreover, $P \in C$ [resp. $P \notin C$], then we call P an inner [resp.
outer] Galois point.
We denote by $\delta(C)$ and $\delta^{\prime}(C)$ the number of inner and outer
Galois point, respectively.
Let $G=G_{p}$ be the Galois group.
By definition an element of G induces a birational transformation of C over the projective line \mathbb{P}^{1}.

Galois Point 2

We assume $d-m \geq 3$.
If the extension is Galois, we call P a Galois point for C.
If, moreover, $P \in C$ [resp. $P \notin C$], then we call P an inner [resp.
outer] Galois point.
We denote by $\delta(C)$ and $\delta^{\prime}(C)$ the number of inner and outer
Galois point, respectively.
Let $G=G_{P}$ be the Galois group.
By definition an element of G induces a birational transformation of C over the projective line \mathbb{P}^{1}.
If C is smooth, then the element is an automorphism of C

Galois Point 2

We assume $d-m \geq 3$.
If the extension is Galois, we call P a Galois point for C.
If, moreover, $P \in C$ [resp. $P \notin C$], then we call P an inner [resp.
outer] Galois point.
We denote by $\delta(C)$ and $\delta^{\prime}(C)$ the number of inner and outer
Galois point, respectively.
Let $G=G_{P}$ be the Galois group.
By definition an element of G induces a birational transformation of C over the projective line \mathbb{P}^{1}.
If C is smooth, then the element is an automorphism of C and $\bar{\pi}_{P}: C \longrightarrow \mathbb{P}^{1}$ is a Galois covering.

Galois Point 3

Moreover, if $d \geq 4$, then the automorphism can be extended to a projective transformation of \mathbb{P}^{2}

Galois Point 3

Moreover, if $d \geq 4$, then the automorphism can be extended to a projective transformation of \mathbb{P}^{2} and hence G turns out a cyclic group .

Galois Point 3

Moreover, if $d \geq 4$, then the automorphism can be extended to a projective transformation of \mathbb{P}^{2} and hence G turns out a cyclic group . The $\bar{\pi}_{P}$ induces an extension of fields $k(C) / k\left(\bar{\pi}^{*}\left(\mathbb{P}^{1}\right)\right)$ of degree $d-1$ or d,
corresponding to $P \in C$ and $P \notin C$, respectively.
We notice that $k\left(\pi^{*}\left(\mathbb{P}^{1}\right)\right)$ is a maximal rational subfield

Galois Point 3

Moreover, if $d \geq 4$, then the automorphism can be extended to a projective transformation of \mathbb{P}^{2} and hence G turns out a cyclic group .
The $\bar{\pi}_{P}$ induces an extension of fields $k(C) / k\left(\bar{\pi}^{*}\left(\mathbb{P}^{1}\right)\right)$ of degree $d-1$ or d, corresponding to $P \in C$ and $P \notin C$, respectively.

Galois Point 3

Moreover, if $d \geq 4$, then the automorphism can be extended to a projective transformation of \mathbb{P}^{2} and hence G turns out a cyclic group .
The $\bar{\pi}_{P}$ induces an extension of fields $k(C) / k\left(\bar{\pi}^{*}\left(\mathbb{P}^{1}\right)\right)$ of degree $d-1$ or d, corresponding to $P \in C$ and $P \notin C$, respectively. We notice that $k\left(\pi^{*}\left(\mathbb{P}^{1}\right)\right)$ is a maximal rational subfield.

Galois Point 3

Moreover, if $d \geq 4$, then the automorphism can be extended to a projective transformation of \mathbb{P}^{2} and hence G turns out a cyclic group .
The $\bar{\pi}_{P}$ induces an extension of fields $k(C) / k\left(\bar{\pi}^{*}\left(\mathbb{P}^{1}\right)\right)$ of degree $d-1$ or d, corresponding to $P \in C$ and $P \notin C$, respectively. We notice that $k\left(\pi^{*}\left(\mathbb{P}^{1}\right)\right)$ is a maximal rational subfield. If we take P in C, then $k\left(\pi^{*}\left(\mathbb{P}^{1}\right)\right)$ becomes a g-maximal rational subfield.

Galois Closure

In case the extension $k(C) / k\left(\mathbb{P}^{1}\right)$ is not Galois,

Galois Closure

In case the extension $k(C) / k\left(\mathbb{P}^{1}\right)$ is not Galois, we take the Galois closure K_{P}
and consider the Galois group $G_{p}=G a l\left(K_{p} / k\left(\mathbb{P}^{1}\right)\right.$
We call G_{p} the Galois group at P (even if P is not a Galois

Galois Closure

In case the extension $k(C) / k\left(\mathbb{P}^{1}\right)$ is not Galois, we take the Galois closure K_{P} and consider the Galois group $G_{P}=\operatorname{Gal}\left(K_{P} / k\left(\mathbb{P}^{1}\right)\right.$

Galois Closure

In case the extension $k(C) / k\left(\mathbb{P}^{1}\right)$ is not Galois, we take the Galois closure K_{P} and consider the Galois group $G_{P}=\operatorname{Gal}\left(K_{P} / k\left(\mathbb{P}^{1}\right)\right.$ We call G_{P} the Galois group at P (even if P is not a Galois point).

Galois Closure

In case the extension $k(C) / k\left(\mathbb{P}^{1}\right)$ is not Galois, we take the Galois closure K_{P} and consider the Galois group $G_{P}=\operatorname{Gal}\left(K_{P} / k\left(\mathbb{P}^{1}\right)\right.$ We call G_{P} the Galois group at P (even if P is not a Galois point).
Let \widetilde{C} be the smooth model of K_{P}, we call it the Galois closure curve.

Galois Closure

In case the extension $k(C) / k\left(\mathbb{P}^{1}\right)$ is not Galois, we take the Galois closure K_{P} and consider the Galois group $G_{P}=\operatorname{Gal}\left(K_{P} / k\left(\mathbb{P}^{1}\right)\right.$ We call G_{P} the Galois group at P (even if P is not a Galois point).
Let \widetilde{C} be the smooth model of K_{P}, we call it the Galois closure curve.
We denote by $g(P)$ the genus of the curve \widetilde{C}.

Way to find

Generally, it is difficult to find Galois point for given curve.

Way to find

Generally, it is difficult to find Galois point for given curve. The following is a way to find all the Galois points.

Way to find

Generally, it is difficult to find Galois point for given curve. The following is a way to find all the Galois points.
First, find the flexes by using Hessian of the curve C.

From them determine Galois point, by considering if the extension is Galois.

Way to find

Generally, it is difficult to find Galois point for given curve. The following is a way to find all the Galois points.
First, find the flexes by using Hessian of the curve C.
By this we have the candidates of Galois point.

Way to find

Generally, it is difficult to find Galois point for given curve. The following is a way to find all the Galois points. First, find the flexes by using Hessian of the curve C. By this we have the candidates of Galois point. From them determine Galois point, by considering if the extension is Galois. .

Way to find

Generally, it is difficult to find Galois point for given curve. The following is a way to find all the Galois points.
First, find the flexes by using Hessian of the curve C.
By this we have the candidates of Galois point.
From them determine Galois point, by considering if the extension is Galois. .
If Q is a flex, we have

$$
W(C)=\sum_{Q \in C}\left\{i\left(C, T_{Q} ; Q\right)-2\right\}=3 d(d-2)
$$

,

Way to find

Generally, it is difficult to find Galois point for given curve. The following is a way to find all the Galois points.
First, find the flexes by using Hessian of the curve C.
By this we have the candidates of Galois point.
From them determine Galois point, by considering if the extension is Galois. .
If Q is a flex, we have

$$
W(C)=\sum_{Q \in C}\left\{i\left(C, T_{Q} ; Q\right)-2\right\}=3 d(d-2)
$$

where T_{Q} is the tangent line to C at Q,

Way to find

Generally, it is difficult to find Galois point for given curve. The following is a way to find all the Galois points.
First, find the flexes by using Hessian of the curve C.
By this we have the candidates of Galois point.
From them determine Galois point, by considering if the extension is Galois. .
If Q is a flex, we have

$$
W(C)=\sum_{Q \in C}\left\{i\left(C, T_{Q} ; Q\right)-2\right\}=3 d(d-2)
$$

where T_{Q} is the tangent line to C at Q, and $i\left(C, T_{Q} ; Q\right)$ is the intersection number of C and T_{Q} at Q.

Way to find

Generally, it is difficult to find Galois point for given curve. The following is a way to find all the Galois points.
First, find the flexes by using Hessian of the curve C.
By this we have the candidates of Galois point.
From them determine Galois point, by considering if the extension is Galois. .
If Q is a flex, we have

$$
W(C)=\sum_{Q \in C}\left\{i\left(C, T_{Q} ; Q\right)-2\right\}=3 d(d-2)
$$

where T_{Q} is the tangent line to C at Q, and $i\left(C, T_{Q} ; Q\right)$ is the intersection number of C and T_{Q} at Q.
By this we have the upper bound of the number of Galois point.

Example 1

We present a special example.

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points. The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.
The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.
We infer from this there are 20 flexes.

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.
The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.
We infer from this there are 20 flexes.
Since $W(C)=24$, there exist at most four Galois points on $X=0$.

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.
The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.
We infer from this there are 20 flexes.
Since $W(C)=24$, there exist at most four Galois points on $X=0$.
For example, at $P=(0: 0: 1)$, putting $x=X / Z, y=Y / Z$, each line passing P is $y=t x$.

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.
The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.
We infer from this there are 20 flexes.
Since $W(C)=24$, there exist at most four Galois points on $X=0$.
For example, at $P=(0: 0: 1)$, putting $x=X / Z, y=Y / Z$, each line passing P is $y=t x$.
The defining equation is $y+x^{4}+y^{4}=0$, so that
$\left(1+t^{4}\right) x^{3}+t \in k(t)[x]$.

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.
The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.
We infer from this there are 20 flexes.
Since $W(C)=24$, there exist at most four Galois points on $X=0$.
For example, at $P=(0: 0: 1)$, putting $x=X / Z, y=Y / Z$, each line passing P is $y=t x$.
The defining equation is $y+x^{4}+y^{4}=0$, so that
$\left(1+t^{4}\right) x^{3}+t \in k(t)[x]$.
This gives a Galois extension over $k(t)$, and the Galois group is the cyclic group of order three.

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.
The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.
We infer from this there are 20 flexes.
Since $W(C)=24$, there exist at most four Galois points on $X=0$.
For example, at $P=(0: 0: 1)$, putting $x=X / Z, y=Y / Z$,
each line passing P is $y=t x$.
The defining equation is $y+x^{4}+y^{4}=0$, so that
$\left(1+t^{4}\right) x^{3}+t \in k(t)[x]$.
This gives a Galois extension over $k(t)$, and the Galois group is the cyclic group of order three.
Galois automorphism is extended to the action
$(X: Y: Z) \rightarrow(\omega X: \omega Y: Z)$

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.
The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.
We infer from this there are 20 flexes.
Since $W(C)=24$, there exist at most four Galois points on $X=0$.
For example, at $P=(0: 0: 1)$, putting $x=X / Z, y=Y / Z$,
each line passing P is $y=t x$.
The defining equation is $y+x^{4}+y^{4}=0$, so that
$\left(1+t^{4}\right) x^{3}+t \in k(t)[x]$.
This gives a Galois extension over $k(t)$, and the Galois group is the cyclic group of order three.
Galois automorphism is extended to the action
$(X: Y: Z) \rightarrow(\omega X: \omega Y: Z)$
where ω is a primitive cubic root of 1 .

Example 1

We present a special example.
For the curve $Y Z^{3}+X^{4}+Y^{4}=0$, find all Galois points.
The Hessian is $2^{2} 3^{3} X^{2} Z\left(8 Y^{3}-Z^{3}\right)$.
We infer from this there are 20 flexes.
Since $W(C)=24$, there exist at most four Galois points on $X=0$.
For example, at $P=(0: 0: 1)$, putting $x=X / Z, y=Y / Z$,
each line passing P is $y=t x$.
The defining equation is $y+x^{4}+y^{4}=0$, so that
$\left(1+t^{4}\right) x^{3}+t \in k(t)[x]$.
This gives a Galois extension over $k(t)$, and the Galois group is the cyclic group of order three.
Galois automorphism is extended to the action
$(X: Y: Z) \rightarrow(\omega X: \omega Y: Z)$
where ω is a primitive cubic root of 1 . All the inner Galois points are $(0,0),(0, \alpha)$, where $\alpha^{3}=-1$

Lissajous's Curve $(x=\cos 3 \theta, y=\sin 4 \theta)$

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$ Let $S(m, n)$ and $C S(m, n)$ be the complexified curves defined by

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$ Let $S(m, n)$ and $C S(m, n)$ be the complexified curves defined by
$x=\sin m \theta, y=\sin n \theta$ and $x=\cos m \theta, y=\sin n \theta$, respectively.

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$ Let $S(m, n)$ and $C S(m, n)$ be the complexified curves defined by
$x=\sin m \theta, y=\sin n \theta$ and $x=\cos m \theta, y=\sin n \theta$, respectively.
They are called Lissajous's curves.

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$
Let $S(m, n)$ and $C S(m, n)$ be the complexified curves defined by
$x=\sin m \theta, y=\sin n \theta$ and $x=\cos m \theta, y=\sin n \theta$, respectively.
They are called Lissajous's curves.
Miura found the following:
group isomorphic to the dihedral group of order d.

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$
Let $S(m, n)$ and $C S(m, n)$ be the complexified curves defined by
$x=\sin m \theta, y=\sin n \theta$ and $x=\cos m \theta, y=\sin n \theta$, respectively.
They are called Lissajous's curves.
Miura found the following:
(1) $S(m, n)$ has a D_{d}-point if $m+n$ is odd,

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$
Let $S(m, n)$ and $C S(m, n)$ be the complexified curves defined by
$x=\sin m \theta, y=\sin n \theta$ and $x=\cos m \theta, y=\sin n \theta$,
respectively.
They are called Lissajous's curves.
Miura found the following:
(1) $S(m, n)$ has a D_{d}-point if $m+n$ is odd,

A point P is called a D_{d}-point if it is a Galois point with Galois group isomorphic to the dihedral group of order d.

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$
Let $S(m, n)$ and $C S(m, n)$ be the complexified curves defined by
$x=\sin m \theta, y=\sin n \theta$ and $x=\cos m \theta, y=\sin n \theta$,
respectively.
They are called Lissajous's curves.
Miura found the following:
(1) $S(m, n)$ has a D_{d}-point if $m+n$ is odd,

A point P is called a D_{d}-point if it is a Galois point with Galois group isomorphic to the dihedral group of order d.
(2) $C S(m, n)$ has a D_{d}-point if m is odd.

Example 2 (Lissajous's curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put $d=2 \max \{m, n\}$
Let $S(m, n)$ and $C S(m, n)$ be the complexified curves defined by
$x=\sin m \theta, y=\sin n \theta$ and $x=\cos m \theta, y=\sin n \theta$,
respectively.
They are called Lissajous's curves.
Miura found the following:
(1) $S(m, n)$ has a D_{d}-point if $m+n$ is odd,

A point P is called a D_{d}-point if it is a Galois point with Galois group isomorphic to the dihedral group of order d.
(2) $C S(m, n)$ has a D_{d}-point if m is odd.

The Galois point is given by the projection $(x, y) \rightarrow x$ or $(x, y) \rightarrow y$.

Example 2 (Lissajous's curve)

Let us consider the Lissajous curve:

Example 2 (Lissajous's curve)

Let us consider the Lissajous curve:
$\xi=\cos 3 \theta=\frac{1}{2}\left(t^{3}+\frac{1}{t^{3}}\right)$ and

Example 2 (Lissajous's curve)

Let us consider the Lissajous curve:
$\xi=\cos 3 \theta=\frac{1}{2}\left(t^{3}+\frac{1}{t^{3}}\right)$ and
$\eta=\sin 4 \theta=\frac{1}{2 \sqrt{-1}}\left(t^{4}-\frac{1}{t^{4}}\right)$.

Example 2 (Lissajous's curve)

Let us consider the Lissajous curve:
$\xi=\cos 3 \theta=\frac{1}{2}\left(t^{3}+\frac{1}{t^{3}}\right)$ and
$\eta=\sin 4 \theta=\frac{1}{2 \sqrt{-1}}\left(t^{4}-\frac{1}{t^{4}}\right)$.
Putting $\xi=Z / X, \eta=Y / X$ and $t=\exp \sqrt{-1} \theta$, we get

Example 2 (Lissajous's curve)

Let us consider the Lissajous curve:
$\xi=\cos 3 \theta=\frac{1}{2}\left(t^{3}+\frac{1}{t^{3}}\right)$ and
$\eta=\sin 4 \theta=\frac{1}{2 \sqrt{-1}}\left(t^{4}-\frac{1}{t^{4}}\right)$.
Putting $\xi=Z / X, \eta=Y / X$ and $t=\exp \sqrt{-1} \theta$, we get
$-16 X^{6} Z^{2}+80 X^{4} Z^{4}-128 X^{2} Z^{6}+64 Z^{8}+9 X^{6} Y^{2}-24 X^{4} Y^{4}+$ $16 X^{2} Y^{6}=0$.

This curve is a rational curve with only double points as the

Example 2 (Lissajous's curve)

Let us consider the Lissajous curve:
$\xi=\cos 3 \theta=\frac{1}{2}\left(t^{3}+\frac{1}{t^{3}}\right)$ and
$\eta=\sin 4 \theta=\frac{1}{2 \sqrt{-1}}\left(t^{4}-\frac{1}{t^{4}}\right)$.
Putting $\xi=Z / X, \eta=Y / X$ and $t=\exp \sqrt{-1} \theta$, we get
$-16 X^{6} Z^{2}+80 X^{4} Z^{4}-128 X^{2} Z^{6}+64 Z^{8}+9 X^{6} Y^{2}-24 X^{4} Y^{4}+$ $16 X^{2} Y^{6}=0$.

This curve is a rational curve with only double points as the singularities

Example 2 (Lissajous's curve)

Let us consider the Lissajous curve:
$\xi=\cos 3 \theta=\frac{1}{2}\left(t^{3}+\frac{1}{t^{3}}\right)$ and
$\eta=\sin 4 \theta=\frac{1}{2 \sqrt{-1}}\left(t^{4}-\frac{1}{t^{4}}\right)$.
Putting $\xi=Z / X, \eta=Y / X$ and $t=\exp \sqrt{-1} \theta$, we get
$-16 X^{6} Z^{2}+80 X^{4} Z^{4}-128 X^{2} Z^{6}+64 Z^{8}+9 X^{6} Y^{2}-24 X^{4} Y^{4}+$ $16 X^{2} Y^{6}=0$.

This curve is a rational curve with only double points as the singularities
and ($0: 0: 1$) is an outer Galois point, whose Galois group $G \cong D_{8}$.

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.
Let $\left(T_{0}, T_{1}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8}

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.
Let $\left(T_{0}, T_{1}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8} and $\varphi(s: t)=\left(s^{8}: s^{7} t: \cdots: t^{8}\right)$.

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.
Let $\left(T_{0}, T_{1}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8} and $\varphi(s: t)=\left(s^{8}: s^{7} t: \cdots: t^{8}\right)$.
Then take the following hyperplanes $H_{i}(i=1,2,3)$:

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.
Let $\left(T_{0}, T_{1}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8} and $\varphi(s: t)=\left(s^{8}: s^{7} t: \cdots: t^{8}\right)$.
Then take the following hyperplanes $H_{i}(i=1,2,3)$:

$$
\begin{array}{lll}
H_{1}: T_{0}+4 T_{2}+6 T_{4}+4 T_{6}+T_{8} & =0 \\
H_{2}: T_{1}-7 T_{3}+7 T_{5}-T_{7} & =0 \\
H_{3}: T_{0}-14 T_{2}+14 T_{6}-T_{8} & =0
\end{array}
$$

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.
Let $\left(T_{0}, T_{1}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8} and $\varphi(s: t)=\left(s^{8}: s^{7} t: \cdots: t^{8}\right)$.
Then take the following hyperplanes $H_{i}(i=1,2,3)$:

$$
\begin{array}{lll}
H_{1}: T_{0}+4 T_{2}+6 T_{4}+4 T_{6}+T_{8}=0 \\
H_{2}: T_{1}-7 T_{3}+7 T_{5}-T_{7} & =0 \\
H_{3}: T_{0}-14 T_{2}+14 T_{6}-T_{8} & =0 .
\end{array}
$$

Put $V=H_{1} \cap H_{2} \cap H_{3}$ and $W=H_{1} \cap H_{2}$.

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.
Let $\left(T_{0}, T_{1}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8} and $\varphi(s: t)=\left(s^{8}: s^{7} t: \cdots: t^{8}\right)$.
Then take the following hyperplanes $H_{i}(i=1,2,3)$:

$$
\begin{array}{lll}
H_{1}: T_{0}+4 T_{2}+6 T_{4}+4 T_{6}+T_{8}=0 \\
H_{2}: T_{1}-7 T_{3}+7 T_{5}-T_{7} & =0 \\
H_{3}: T_{0}-14 T_{2}+14 T_{6}-T_{8} & =0 .
\end{array}
$$

Put $V=H_{1} \cap H_{2} \cap H_{3}$ and $W=H_{1} \cap H_{2}$.
The linear subspace W is the Galois subspace for $\varphi\left(\mathbb{P}^{1}\right)$, i.e.,

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.
Let $\left(T_{0}, T_{1}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8} and $\varphi(s: t)=\left(s^{8}: s^{7} t: \cdots: t^{8}\right)$.
Then take the following hyperplanes $H_{i}(i=1,2,3)$:

$$
\begin{aligned}
& H_{1}: T_{0}+4 T_{2}+6 T_{4}+4 T_{6}+T_{8}=0 \\
& H_{2}: T_{1}-7 T_{3}+7 T_{5}-T_{7}=0 \\
& H_{3}: T_{0}-14 T_{2}+14 T_{6}-T_{8}=0
\end{aligned}
$$

Put $V=H_{1} \cap H_{2} \cap H_{3}$ and $W=H_{1} \cap H_{2}$.
The linear subspace W is the Galois subspace for $\varphi\left(\mathbb{P}^{1}\right)$, i.e., the projection with the center W restricts to a Galois covering $\varphi\left(\mathbb{P}^{1}\right) \longrightarrow \mathbb{P}^{1}$.

Example 2 (Lissajous's curve)

Moreover, let $\varphi: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{8}$ be the Veronese mapping of degree eight.
Let $\left(T_{0}, T_{1}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8} and $\varphi(s: t)=\left(s^{8}: s^{7} t: \cdots: t^{8}\right)$.
Then take the following hyperplanes $H_{i}(i=1,2,3)$:

$$
\begin{array}{lll}
H_{1}: T_{0}+4 T_{2}+6 T_{4}+4 T_{6}+T_{8}=0 \\
H_{2}: T_{1}-7 T_{3}+7 T_{5}-T_{7} & =0 \\
H_{3}: T_{0}-14 T_{2}+14 T_{6}-T_{8} & =0 .
\end{array}
$$

Put $V=H_{1} \cap H_{2} \cap H_{3}$ and $W=H_{1} \cap H_{2}$.
The linear subspace W is the Galois subspace for $\varphi\left(\mathbb{P}^{1}\right)$, i.e., the projection with the center W restricts to a Galois covering $\varphi\left(\mathbb{P}^{1}\right) \longrightarrow \mathbb{P}^{1}$.
Therefore (0:0:1) is the Galois point for $\pi_{V}\left(\varphi\left(\mathbb{P}^{1}\right)\right)=C$, where π_{V} is the projection with the center V.

Example 3

Let us examine the definition by example.

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$,

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have
(1) If P is a flex, then $G_{P} \cong S_{3}$ and $g(P)=9$. Note that there are 12 flexes.

So we see $\delta(C)=0$

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have
(1) If P is a flex, then $G_{P} \cong S_{3}$ and $g(P)=9$. Note that there are 12 flexes.
(2) If P is not a flex, then $G_{P} \cong S_{3}$ and $g(P)=10$. .

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have
(1) If P is a flex, then $G_{P} \cong S_{3}$ and $g(P)=9$. Note that there are 12 flexes.
(2) If P is not a flex, then $G_{P} \cong S_{3}$ and $g(P)=10$.

So we see $\delta(C)=0$
(1) There are three Galois points

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have
(1) If P is a flex, then $G_{P} \cong S_{3}$ and $g(P)=9$. Note that there are 12 flexes.
(2) If P is not a flex, then $G_{P} \cong S_{3}$ and $g(P)=10$.

So we see $\delta(C)=0$
(2) In case $P \notin C$, we have

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have
(1) If P is a flex, then $G_{P} \cong S_{3}$ and $g(P)=9$. Note that there are 12 flexes.
(2) If P is not a flex, then $G_{P} \cong S_{3}$ and $g(P)=10$.

So we see $\delta(C)=0$
(2) In case $P \notin C$, we have
(1) There are three Galois points

$$
(1: 0: 0),(0: 1: 0),(0: 0: 1) \in \mathbb{P}^{2} \backslash C . \text { Hence } \delta^{\prime}(C)=3
$$

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have
(1) If P is a flex, then $G_{P} \cong S_{3}$ and $g(P)=9$. Note that there are 12 flexes.
(2) If P is not a flex, then $G_{P} \cong S_{3}$ and $g(P)=10$.

So we see $\delta(C)=0$
(2) In case $P \notin C$, we have
(1) There are three Galois points
$(1: 0: 0),(0: 1: 0),(0: 0: 1) \in \mathbb{P}^{2} \backslash C$. Hence $\delta^{\prime}(C)=3$.
(2) There are 12 points satisfying $G_{P} \cong D_{4}$.

Hence we have $G_{P} \cong S_{4}$ except the 15 points.

Example 3

Let us examine the definition by example. If C is the quartic Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have
(1) If P is a flex, then $G_{P} \cong S_{3}$ and $g(P)=9$. Note that there are 12 flexes.
(2) If P is not a flex, then $G_{P} \cong S_{3}$ and $g(P)=10$.

So we see $\delta(C)=0$
(2) In case $P \notin C$, we have
(1) There are three Galois points

$$
(1: 0: 0),(0: 1: 0),(0: 0: 1) \in \mathbb{P}^{2} \backslash C \text {. Hence } \delta^{\prime}(C)=3 .
$$

(2) There are 12 points satisfying $G_{P} \cong D_{4}$.
(3) There is no point satisfying $G_{P} \cong A_{4}$.

Example 3

Let us examine the definition by example. If C is the quartic
Fermat curve $x^{4}+y^{4}=1$, then we have the following according to the cases $P \in C$ or $P \notin C$.
(1) In case $P \in C$, we have
(1) If P is a flex, then $G_{P} \cong S_{3}$ and $g(P)=9$. Note that there are 12 flexes.
(2) If P is not a flex, then $G_{P} \cong S_{3}$ and $g(P)=10$.

So we see $\delta(C)=0$
(2) In case $P \notin C$, we have
(1) There are three Galois points

$$
(1: 0: 0),(0: 1: 0),(0: 0: 1) \in \mathbb{P}^{2} \backslash C \text {. Hence } \delta^{\prime}(C)=3 .
$$

(2) There are 12 points satisfying $G_{P} \cong D_{4}$.
(3) There is no point satisfying $G_{P} \cong A_{4}$.

Hence we have $G_{P} \cong S_{4}$ except the 15 points.

Theorem 1

Theorem
For a general point P, the Galois group G_{p} is the full symmetric group S_{d-1} and S_{d}, corresponding to $P \in C$ and $P \notin C$ respectively.

Now several questions arise:
(1) Find Galois points.
2) Find the distribution of the inner and outer Galois points.

Now several questions arise:
(1) Find Galois points.

Find the distribution of the inner and outer Galois points. (3) Find the Galois group G_{p} at P and the structure of the field

Now several questions arise:
(0) Find Galois points.
(2) Find the distribution of the inner and outer Galois points.
(4) Determine the intermediate fields between $k\left(\mathbb{P}^{1}\right)$ and K_{p}.

Now several questions arise:
(1) Find Galois points.
(2) Find the distribution of the inner and outer Galois points.
(3) Find the Galois group G_{P} at P and the structure of the field K_{P}.
(a) Determine the intermediate fields between $k\left(\mathbb{P}^{-1}\right)$ and K_{p}. (6) Find the characterization of curve with the maximal number of Galois points.

Now several questions arise:
(1) Find Galois points.
(2) Find the distribution of the inner and outer Galois points.
(3) Find the Galois group G_{P} at P and the structure of the field K_{p}.
(4) Determine the intermediate fields between $k\left(\mathbb{P}^{1}\right)$ and K_{P}.
(5) Find the characterization of curve with the maximal number of Galois points.

Now several questions arise:
(1) Find Galois points.
(2) Find the distribution of the inner and outer Galois points.
(3) Find the Galois group G_{p} at P and the structure of the field K_{P}.
(4) Determine the intermediate fields between $k\left(\mathbb{P}^{1}\right)$ and K_{P}.
(5) Find the characterization of curve with the maximal number of Galois points.

Theorem 2

Theorem
If $d=4$, then the number of inner Galois points $\delta(C)=0,1$ or 4.

Theorem 2

Theorem
If $d=4$, then the number of inner Galois points $\delta(C)=0$, 1 or 4.

The curve with $\delta(C)=4$ is unique, i.e.,

Theorem 2

Theorem
If $d=4$, then the number of inner Galois points $\delta(C)=0,1$ or 4.

The curve with $\delta(C)=4$ is unique, i.e., it is (projectively equivalent to the curve) $y+x^{4}+y^{4}=0$.

Theorem 2

Theorem

If $d=4$, then the number of inner Galois points $\delta(C)=0,1$ or 4.

The curve with $\delta(C)=4$ is unique, i.e., it is (projectively equivalent to the curve) $y+x^{4}+y^{4}=0$. On the contrary, if $d \geq 5$, then we have that $\delta(C)=0$ or 1 .

Theorem 2

Theorem

If $d=4$, then the number of inner Galois points $\delta(C)=0$, 1 or 4.

The curve with $\delta(C)=4$ is unique, i.e., it is (projectively equivalent to the curve) $y+x^{4}+y^{4}=0$. On the contrary, if $d \geq 5$, then we have that $\delta(C)=0$ or 1 .
For the Galois point P, the group G_{P} is the cyclic group of order $d-1$

Theorem 3

Theorem
If $d \geq 4$, then the number of outer Galois points $\delta^{\prime}(C)=0,1$ or 3.

Theorem 3

Theorem
If $d \geq 4$, then the number of outer Galois points $\delta^{\prime}(C)=0,1$ or 3.

For the Galois point P, the group G_{p} is the cyclic group of order d.

Theorem 3

Theorem

If $d \geq 4$, then the number of outer Galois points $\delta^{\prime}(C)=0,1$ or 3.

For the Galois point P, the group G_{P} is the cyclic group of order d.
The curve with $\delta^{\prime}(C)=3$ is unique, i.e., the Fermat curve $x^{d}+y^{d}=1$.

Proof

The reason that the group is cyclic is as follows:

Proof

The reason that the group is cyclic is as follows: Suppose $P \in C$ is an inner Galois point.

Proof

The reason that the group is cyclic is as follows: Suppose $P \in C$ is an inner Galois point.
Then, $\sigma \in G_{P}$ induces an automorphism of C, since C is smooth.

Proof

The reason that the group is cyclic is as follows: Suppose $P \in C$ is an inner Galois point.
Then, $\sigma \in G_{P}$ induces an automorphism of C, since C is smooth.
Moreover, σ is a restriction of a projective transformation, because $d \geq 4$.

Proof

The reason that the group is cyclic is as follows: Suppose $P \in C$ is an inner Galois point.
Then, $\sigma \in G_{P}$ induces an automorphism of C, since C is smooth.
Moreover, σ is a restriction of a projective transformation, because $d \geq 4$.
Thus we have an injective representation $G_{P} \hookrightarrow P G L(k, 3)$.

Proof

The reason that the group is cyclic is as follows: Suppose $P \in C$ is an inner Galois point.
Then, $\sigma \in G_{P}$ induces an automorphism of C, since C is smooth.
Moreover, σ is a restriction of a projective transformation, because $d \geq 4$.
Thus we have an injective representation $G_{P} \hookrightarrow P G L(k, 3)$. We denote it by the same notation σ.

Proof

The reason that the group is cyclic is as follows: Suppose $P \in C$ is an inner Galois point.
Then, $\sigma \in G_{P}$ induces an automorphism of C, since C is smooth.
Moreover, σ is a restriction of a projective transformation, because $d \geq 4$.
Thus we have an injective representation $G_{P} \hookrightarrow P G L(k, 3)$. We denote it by the same notation σ.
If ℓ is a line passing through P, then $\sigma(C \cap \ell)=C \cap \ell$.

Proof

The reason that the group is cyclic is as follows: Suppose $P \in C$ is an inner Galois point.
Then, $\sigma \in G_{P}$ induces an automorphism of C, since C is smooth.
Moreover, σ is a restriction of a projective transformation, because $d \geq 4$.
Thus we have an injective representation $G_{P} \hookrightarrow P G L(k, 3)$.
We denote it by the same notation σ.
If ℓ is a line passing through P, then $\sigma(C \cap \ell)=C \cap \ell$.
Taking a suitable coordinates, we can assume that
$P=(0: 0: 1)$.

Proof

The reason that the group is cyclic is as follows:
Suppose $P \in C$ is an inner Galois point.
Then, $\sigma \in G_{P}$ induces an automorphism of C, since C is smooth.
Moreover, σ is a restriction of a projective transformation, because $d \geq 4$.
Thus we have an injective representation $G_{P} \hookrightarrow P G L(k, 3)$.
We denote it by the same notation σ.
If ℓ is a line passing through P, then $\sigma(C \cap \ell)=C \cap \ell$.
Taking a suitable coordinates, we can assume that
$P=(0: 0: 1)$.
Let $a_{i j}$ be the (i, j) component of σ, where $1 \leq i, j \leq 3$,

Proof

The reason that the group is cyclic is as follows:
Suppose $P \in C$ is an inner Galois point.
Then, $\sigma \in G_{P}$ induces an automorphism of C, since C is smooth.
Moreover, σ is a restriction of a projective transformation, because $d \geq 4$.
Thus we have an injective representation $G_{P} \hookrightarrow P G L(k, 3)$.
We denote it by the same notation σ.
If ℓ is a line passing through P, then $\sigma(C \cap \ell)=C \cap \ell$.
Taking a suitable coordinates, we can assume that
$P=(0: 0: 1)$.
Let $a_{i j}$ be the (i, j) component of σ, where $1 \leq i, j \leq 3$, then $a_{13}=a_{23}=0$, since $\sigma(P)=P$.

Proof

Moreover we have $\sigma(C \cap \ell)=\sigma \cap \ell$ for any line ℓ passing through P.
We infer from this that σ is a diagonal matrix with eigenvalues
where $(a / b)^{n}=1$ for some positive integer n.

Proof

Moreover we have $\sigma(C \cap \ell)=\sigma \cap \ell$ for any line ℓ passing through P.
We infer from this that σ is a diagonal matrix with eigenvalues a, a and b,

Proof

Moreover we have $\sigma(C \cap \ell)=\sigma \cap \ell$ for any line ℓ passing through P.
We infer from this that σ is a diagonal matrix with eigenvalues a, a and b, where $(a / b)^{n}=1$ for some positive integer n.

Proof

Moreover we have $\sigma(C \cap \ell)=\sigma \cap \ell$ for any line ℓ passing through P.
We infer from this that σ is a diagonal matrix with eigenvalues a, a and b,
where $(a / b)^{n}=1$ for some positive integer n.
Thus G_{p} has an injective representation φ in the multiplicative group of k, i.e., $\varphi: G_{P} \hookrightarrow k^{*}$.

Proof

Moreover we have $\sigma(C \cap \ell)=\sigma \cap \ell$ for any line ℓ passing through P.
We infer from this that σ is a diagonal matrix with eigenvalues
a, a and b,
where $(a / b)^{n}=1$ for some positive integer n.
Thus G_{p} has an injective representation φ in the multiplicative group of k, i.e., $\varphi: G_{p} \hookrightarrow k^{*}$.
Hence G_{p} is a cyclic group and has an order $d-1$.

Generalization

The above research has been generalized as follows:

Generalization

The above research has been generalized as follows:
(1) We can consider the Galois point for positive characteristic case.

Generalization

The above research has been generalized as follows:
(1) We can consider the Galois point for positive characteristic case.
In this case we have many different results.
For some curves there exist an infinitely many Galois
points.
The Galois group is not necessarily cyclic even if C is smooth.

Generalization

The above research has been generalized as follows:
(1) We can consider the Galois point for positive characteristic case.
In this case we have many different results.
For some curves there exist an infinitely many Galois points.
smooth.

Generalization

The above research has been generalized as follows:
(1) We can consider the Galois point for positive characteristic case.
In this case we have many different results.
For some curves there exist an infinitely many Galois points.
The Galois group is not necessarily cyclic even if C is smooth.

Generalization

The above research has been generalized as follows:
(1) We can consider the Galois point for positive characteristic case.
In this case we have many different results.
For some curves there exist an infinitely many Galois points.
The Galois group is not necessarily cyclic even if C is smooth.
(2) The consideration above is applicable to hypersurface, i.e., S is a hypersurface in \mathbb{P}^{n}

- More generally we should consider Galois embedding of algebraic variety.

Generalization

The above research has been generalized as follows:
(1) We can consider the Galois point for positive characteristic case.
In this case we have many different results.
For some curves there exist an infinitely many Galois points.
The Galois group is not necessarily cyclic even if C is smooth.
(2) The consideration above is applicable to hypersurface, i.e., S is a hypersurface in \mathbb{P}^{n}
(0) Similarly we can consider the Galois line for space curve.
algebraic variety.

Generalization

The above research has been generalized as follows:
(1) We can consider the Galois point for positive characteristic case.
In this case we have many different results.
For some curves there exist an infinitely many Galois points.
The Galois group is not necessarily cyclic even if C is smooth.
(2) The consideration above is applicable to hypersurface, i.e., S is a hypersurface in \mathbb{P}^{n}
(3) Similarly we can consider the Galois line for space curve.
(0) More generally we should consider Galois embedding of algebraic variety.

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:
(i) $\operatorname{deg} D=3$ case:

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:
(i) $\operatorname{deg} D=3$ case:

The embedding has a Galois point iff $j(E)=0$.

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:
(i) $\operatorname{deg} D=3$ case:

The embedding has a Galois point iff $j(E)=0$.
$G \cong Z_{3}$, there exists three Galois points.

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:
(i) $\operatorname{deg} D=3$ case:

The embedding has a Galois point iff $j(E)=0$.
$G \cong Z_{3}$, there exists three Galois points.
In other words, let C be a smooth plane cubic.

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:
(i) $\operatorname{deg} D=3$ case:

The embedding has a Galois point iff $j(E)=0$.
$G \cong Z_{3}$, there exists three Galois points.
In other words, let C be a smooth plane cubic.
Assume $P \in \mathbb{P}^{2} \backslash C$ and consider the projection π

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:
(i) $\operatorname{deg} D=3$ case:

The embedding has a Galois point iff $j(E)=0$.
$G \cong Z_{3}$, there exists three Galois points.
In other words, let C be a smooth plane cubic.
Assume $P \in \mathbb{P}^{2} \backslash C$ and consider the projection π with the center P to \mathbb{P}^{1}.

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:
(i) $\operatorname{deg} D=3$ case:

The embedding has a Galois point iff $j(E)=0$.
$G \cong Z_{3}$, there exists three Galois points.
In other words, let C be a smooth plane cubic.
Assume $P \in \mathbb{P}^{2} \backslash C$ and consider the projection π
with the center P to \mathbb{P}^{1}.
Then, π induces a Galois extension $k(C) / k\left(\pi^{*}\left(\mathbb{P}^{1}\right)\right)$, or Galois covering

Example 4

Let us examine the embedding of elliptic curve E associated with the complete linear system $|D|$:
(i) $\operatorname{deg} D=3$ case:

The embedding has a Galois point iff $j(E)=0$.
$G \cong Z_{3}$, there exists three Galois points.
In other words, let C be a smooth plane cubic.
Assume $P \in \mathbb{P}^{2} \backslash C$ and consider the projection π
with the center P to \mathbb{P}^{1}.
Then, π induces a Galois extension $k(C) / k\left(\pi^{*}\left(\mathbb{P}^{1}\right)\right)$, or Galois covering
$\left.\pi\right|_{C}: C \longrightarrow \mathbb{P}^{1}$ iff P is a Galois point.

Example 4

The C has a Galois point iff $j(C)=0$,

Example 4

The C has a Galois point iff $j(C)=0$, it is projectively equivalent to the Fermat cubic : $X^{3}+Y^{3}+Z^{3}=0$.

Example 4

The C has a Galois point iff $j(C)=0$, it is projectively equivalent to the Fermat cubic : $X^{3}+Y^{3}+Z^{3}=0$.
There are three outer Galois points: $(1: 0: 0),(0: 1: 0)$ and (0:0:1).

Example 4

The C has a Galois point iff $j(C)=0$, it is projectively equivalent to the Fermat cubic :
$X^{3}+Y^{3}+Z^{3}=0$.
There are three outer Galois points: $(1: 0: 0),(0: 1: 0)$ and (0:0:1).
If we use Weierstrass normal form, C is given by
$Y^{2} Z=4 X^{3}+Z^{3}$ and

Example 4

The C has a Galois point iff $j(C)=0$, it is projectively equivalent to the Fermat cubic :
$X^{3}+Y^{3}+Z^{3}=0$.
There are three outer Galois points: $(1: 0: 0),(0: 1: 0)$ and (0:0:1).
If we use Weierstrass normal form, C is given by
$Y^{2} Z=4 X^{3}+Z^{3}$ and
the Galois points are $(1 ; 0: 0),(0: \sqrt{-3}: 1)$

Example 4

The C has a Galois point iff $j(C)=0$, it is projectively equivalent to the Fermat cubic :
$X^{3}+Y^{3}+Z^{3}=0$.
There are three outer Galois points: $(1: 0: 0),(0: 1: 0)$ and (0:0:1).
If we use Weierstrass normal form, C is given by
$Y^{2} Z=4 X^{3}+Z^{3}$ and
the Galois points are $(1 ; 0: 0),(0: \sqrt{-3}: 1)$
and ($0:-\sqrt{-3}: 1$)

Example 4

(ii) $\operatorname{deg} D=4$ case:

$$
f_{D}(E)=C \subset \mathbb{P}^{3} \text { has six skew Galois lines }
$$

Example 4

(ii) $\operatorname{deg} D=4$ case:

In this case the embedding has always Galois lines.

Example 4

(ii) $\operatorname{deg} D=4$ case:

In this case the embedding has always Galois lines. $f_{D}(E)=C \subset \mathbb{P}^{3}$ has six skew Galois lines

Example 4

(ii) $\operatorname{deg} D=4$ case:

In this case the embedding has always Galois lines.
$f_{D}(E)=C \subset \mathbb{P}^{3}$ has six skew Galois lines the six lines form a tetrahedron (as in the next page):

Example 4

(ii) $\operatorname{deg} D=4$ case:

In this case the embedding has always Galois lines. $f_{D}(E)=C \subset \mathbb{P}^{3}$ has six skew Galois lines the six lines form a tetrahedron (as in the next page): and the Galois group $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$

Example 4

(ii) $\operatorname{deg} D=4$ case:

In this case the embedding has always Galois lines. $f_{D}(E)=C \subset \mathbb{P}^{3}$ has six skew Galois lines the six lines form a tetrahedron (as in the next page): and the Galois group $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ If $j(E)=12^{3}$, there exist eight Z_{4}-lines in addition.

Example 4

(ii) $\operatorname{deg} D=4$ case:

In this case the embedding has always Galois lines. $f_{D}(E)=C \subset \mathbb{P}^{3}$ has six skew Galois lines the six lines form a tetrahedron (as in the next page): and the Galois group $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ If $j(E)=12^{3}$, there exist eight Z_{4}-lines in addition. In this case the arrangement of Galois lines is very complicated.

Galois Lines

Galois lines for a space elliptic curve $\left(j(E) \neq 12^{3}\right)$.

Galois Lines

Galois lines for a space elliptic curve $\left(j(E) \neq 12^{3}\right)$.

Example 4

In other words, let C be a linearly normal smooth genus-one curve in

Example 4

In other words, let C be a linearly normal smooth genus-one curve in the projective three space \mathbb{P}^{3}.

Example 4

In other words, let C be a linearly normal smooth genus-one curve in
the projective three space \mathbb{P}^{3}.
Then C has 6 Galois lines $\ell_{i}(i=1, \ldots, 6)$

Example 4

In other words, let C be a linearly normal smooth genus-one curve in
the projective three space \mathbb{P}^{3}.
Then C has 6 Galois lines $\ell_{i}(i=1, \ldots, 6)$
i.e., the projection with the center ℓ_{i} to \mathbb{P}^{1}

Example 4

In other words, let C be a linearly normal smooth genus-one curve in
the projective three space \mathbb{P}^{3}.
Then C has 6 Galois lines $\ell_{i}(i=1, \ldots, 6)$
i.e., the projection with the center ℓ_{i} to \mathbb{P}^{1}
induces a Galois covering $C \longrightarrow \mathbb{P}^{1}$

Example 4

In other words, let C be a linearly normal smooth genus-one curve in
the projective three space \mathbb{P}^{3}.
Then C has 6 Galois lines $\ell_{i}(i=1, \ldots, 6)$
i.e., the projection with the center ℓ_{i} to \mathbb{P}^{1}
induces a Galois covering $C \longrightarrow \mathbb{P}^{1}$
with the Galois group G.
(iii) If deg $D=5$, E has no Galois embeddings.
(iv) For any deg D, we can find the possibility of G,

Example 4

In other words, let C be a linearly normal smooth genus-one curve in
the projective three space \mathbb{P}^{3}.
Then C has 6 Galois lines $\ell_{i}(i=1, \ldots, 6)$
i.e., the projection with the center ℓ_{i} to \mathbb{P}^{1}
induces a Galois covering $C \longrightarrow \mathbb{P}^{1}$
with the Galois group G.
(iii) If $\operatorname{deg} D=5, E$ has no Galois embeddings.

> however it is difficult to determine the arrangement of Galois
subspaces.

Example 4

In other words, let C be a linearly normal smooth genus-one curve in
the projective three space \mathbb{P}^{3}.
Then C has 6 Galois lines $\ell_{i}(i=1, \ldots, 6)$
i.e., the projection with the center ℓ_{i} to \mathbb{P}^{1}
induces a Galois covering $C \longrightarrow \mathbb{P}^{1}$
with the Galois group G.
(iii) If $\operatorname{deg} D=5, E$ has no Galois embeddings.
(iv) For any deg D, we can find the possibility of G,

Example 4

In other words, let C be a linearly normal smooth genus-one curve in
the projective three space \mathbb{P}^{3}.
Then C has 6 Galois lines $\ell_{i}(i=1, \ldots, 6)$
i.e., the projection with the center ℓ_{i} to \mathbb{P}^{1}
induces a Galois covering $C \longrightarrow \mathbb{P}^{1}$
with the Galois group G.
(iii) If $\operatorname{deg} D=5, E$ has no Galois embeddings.
(iv) For any $\operatorname{deg} D$, we can find the possibility of G,
however it is difficult to determine the arrangement of Galois subspaces.

Paalam

For the details, please refer:

Paalam

For the details, please refer:
J. Algebra 226, 239, 264, 287, 320, 321, 323 and others listed in our website

Paalam

For the details, please refer:
J. Algebra 226, 239, 264, 287, 320, 321, 323 and others listed in our website
Please visit our web page

In this site about 70 open questions are listed.

Paalam

For the details, please refer:
J. Algebra 226, 239, 264, 287, 320, 321, 323 and others listed in our website
Please visit our web page
http://hyoshihara.web.fc2.com/
n this site about 70 open questions are listed.

Paalam

For the details, please refer:
J. Algebra 226, 239, 264, 287, 320, 321, 323 and others listed in our website
Please visit our web page
http://hyoshihara.web.fc2.com/
In this site about 70 open questions are listed.

Maraming salamat!

