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Preliminary Remark 1

First, recall the following:
it is well-known that ∫

1√
1 − x2

dx

can be expressed by elementary function (= sin−1x) , but∫
1√

1 − x3
dx

can not.
Why ?
What is the essential difference between them?
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Preliminary Remark 2

The difference is
the former is given by y =

√
1 − x2, i.e., x2 + y2 = 1 and

the latter is given by y =
√

1 − x3, i.e., x3 + y2 = 1.
The former curve can be parametrized by rational functions

x =
1 − t2

1 + t2 , y =
2t

1 + t2 .

Whereas, the latter cannot.
In fact, the inverse of the integral is an elliptic function.
Let us examine this in more detail.
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Preliminary Remark 3

Consider the circle x2 + y2 = 1 and the lines y = t(x + 1)
passing through (−1,0)
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Preliminary Remark 4

There is a mapping πP : C \ {P} −→ L, where L is the y-axis
and πP(Q) = R. This mapping is one of a projection.
This is a 1:1 correspondence and induces an isomorphism
between C and projective line.
So the circle can be parametrized by a line.
The function field of circle is the quotient field of the domain
k [x , y ]/(x2 + y2 − 1).
It is rational, i.e., it is isomorphic to k(t), i.e., purely
transcendental extension over a ground field.
Indeed, k(1−t2

1+t2 ,
2t

1+t2 ) = k(t), so the circle is a rational curve.
By the similar way we can parametrize quadratic curves by
rational functions.
So the quadratic curve is a rational curve.,
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Preliminary Remark 5

The curve x3 + y2 = 1 can not be parametrized by any rational
function.
(Prove this as an exercise!)
Note that rational or not is not determined by the degree.
It’s determined by genus of the curve.
For example, the curve y2 = x2(x + 1) is a rational curve,
Indeed, take the projection center at (0,0).
Namely consider the line y = tx passing through (0,0).
Then we have x = t2 − 1, y = t(t2 − 1).
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Transcendental Extension 1

Please allow me to state my personal interest.
I had an interest in field theory.
Suppose K is a field finitely generated over a field k .
If the extension K/k is algebraic, then there are several
methods to study the property of the extension,
for example, degree, Galois theory etc.
However, if is is transcendental, then there are few suitable
ones.
How to study the extension K/k?
I think purely transcendental extension is the most simple one.
So, I take the purely transcendental extension as the starting
point.
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Transcendental Extension 2

Let n be the transcendental degree.
In this case, we pay attention to a maximal rational subfield Km,
which has the following properties:

1 Km is an intermediate field between K and k ,
2 and purely trans. ext. of k with the trans. degree n,
3 there is no field between K and Km.

Then, we consider the algebraic extension K/Km
However, there is an inconvenient point.
In fact, even if n = 1 and K = k(x), there are many
maximal rational subfields:
k(x2), k(x3), . . . , k(xp), . . . (p is a prime number)
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Irrationality

So, we use the notion: the degree of irrationality, which is
defined as follows:
min { [K : Km] : Km is a maximal rational subfield. }
We denote this number by irr(K/k ) or irr(K ).
The field K is rational if and only if irr(K )= 1.
Maximal rational subfield F with [K : F ] = irr(K ) is called
g-maximal rational subfield.
For example, for the elliptic function field
k(x , y), y2 = x3 + ax + b, 4a3 + 27b2 ̸= 0
irr(k(x , y)) = 2 and k(x) is a g-maximal rational subfield,
k(y) is a maximal rational field but not a g-maximal one.
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The field is an algebraic function field.
The transcendence degree coincides with the dimension of the
variety.
A field extension L/K corresponds to a dominant rational map
f : V 99K W ,
where V and W are algebraic varieties
with function fields L and K , respectively.
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If the extension is algebraic, then the morphism is a covering.
Moreover, if the extension is Galois, then the covering is Galois.
So, we can ”see” the field extension by the mapping between
varieties.
For example, for the elliptic function field k(x , y), the extension
k(x , y)/k(x) corresponds to
the double covering π : E −→ P1, where E is an elliptic curve.
The π is a 2 : 1 mapping except at four points where it is 1 : 1,
which are branch points.
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I explain the motive of this research.
Roughly speaking, algebraic variety is a realization of algebra.
Commutative ring R corresponds the scheme Spec(R).
So, we can study variety by algebra, and vice versa.
Let’s take up again the elliptic curve y2 = x3 + 1.
It is not simple to prove that the curve is parametrized by
rational function.
However it is simple by using geometry.
We have only to check the existence of regular form.
In fact, the form dx

2y = dy
3x2 is a regular 1-form.

The genus is not zero, so that the curve is not rational.
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Simile

Before proceeding to the definition of Galois point, I use a
simile here.
Very rough consideration before the definition:
Suppose there is a cube in a space. Look at it from several
positions by one eye.
In general we cannot find any symmetry in the figure.
However, at some special points it looks like a regular hexagon
or a square.
We seek for such the special points for algebraic curves in the
projective plane.
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Galois Point 1

Hereafter we discuss on the ground field k , which is assumed
to be an algebraically closed field of characteristic zero.
Let C be an irreducible projective plane curve of degree d
and k(C) the function field.
Let P be a point in the plane P2

and consider the projection πP : P2 99K P1 with the center P.
Restricting πP to C, we get a dominant rational map
π̄P : C 99K P1,
which induces a finite extension of fields π̄∗

P : k(P1) ↪→ k(C) of
degree d − m,
where m is the multiplicity of C at P (if P /∈ C, then we regard m
to be 0.)
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Galois Point 2

We assume d − m ≥ 3.
If the extension is Galois, we call P a Galois point for C.
If, moreover, P ∈ C [resp. P /∈ C], then we call P an inner [resp.
outer] Galois point.
We denote by δ(C) and δ′(C) the number of inner and outer
Galois point, respectively.
Let G = GP be the Galois group.
By definition an element of G induces a birational
transformation of C over the projective line P1.
If C is smooth, then the element is an automorphism of C
and π̄P : C −→ P1 is a Galois covering.
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By definition an element of G induces a birational
transformation of C over the projective line P1.
If C is smooth, then the element is an automorphism of C
and π̄P : C −→ P1 is a Galois covering.



Galois Point 3

Moreover, if d ≥ 4, then the automorphism can be extended to
a projective transformation of P2

and hence G turns out a cyclic group .
The π̄P induces an extension of fields k(C)/k(π̄∗(P1)) of
degree d − 1 or d ,
corresponding to P ∈ C and P /∈ C, respectively.
We notice that k(π∗(P1)) is a maximal rational subfield.
If we take P in C, then k(π∗(P1)) becomes a g-maximal rational
subfield.
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Galois Closure

In case the extension k(C)/k(P1) is not Galois,
we take the Galois closure KP
and consider the Galois group GP = Gal(KP/k(P1)
We call GP the Galois group at P (even if P is not a Galois
point).
Let C̃ be the smooth model of KP , we call it the Galois closure
curve.
We denote by g(P) the genus of the curve C̃.
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Way to find

Generally, it is difficult to find Galois point for given curve. The
following is a way to find all the Galois points.
First, find the flexes by using Hessian of the curve C.
By this we have the candidates of Galois point.
From them determine Galois point, by considering if the
extension is Galois. .
If Q is a flex, we have

W (C) =
∑
Q∈C

{i(C,TQ;Q)− 2} = 3d(d − 2)

,
where TQ is the tangent line to C at Q,
and i(C,TQ;Q) is the intersection number of C and TQ at Q.
By this we have the upper bound of the number of Galois point.
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Example 1

We present a special example.
For the curve YZ 3 + X 4 + Y 4 = 0, find all Galois points.
The Hessian is 2233X 2Z (8Y 3 − Z 3).
We infer from this there are 20 flexes.
Since W (C) = 24, there exist at most four Galois points on
X = 0.
For example, at P = (0 : 0 : 1), putting x = X/Z , y = Y/Z ,
each line passing P is y = tx .
The defining equation is y + x4 + y4 = 0, so that
(1 + t4)x3 + t ∈ k(t)[x ].
This gives a Galois extension over k(t), and the Galois group is
the cyclic group of order three.
Galois automorphism is extended to the action
(X : Y : Z ) → (ωX : ωY : Z )
where ω is a primitive cubic root of 1.
All the inner Galois points are (0,0), (0, α), where α3 = −1
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Lissajous’s Curve (x = cos 3θ, y = sin 4θ)



Example 2 (Lissajous’s curve)

Let us examine classically familiar curves.
Let m, n be coprime positive integers. Put d = 2max{m,n}
Let S(m,n) and CS(m,n) be the complexified curves defined
by
x = sin mθ, y = sin nθ and x = cos mθ, y = sin nθ,
respectively.
They are called Lissajous’s curves.
Miura found the following:
(1) S(m,n) has a Dd -point if m + n is odd,
A point P is called a Dd -point if it is a Galois point with Galois
group isomorphic to the dihedral group of order d .
(2) CS(m,n) has a Dd -point if m is odd.
The Galois point is given by the projection (x , y) → x or
(x , y) → y .
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group isomorphic to the dihedral group of order d .
(2) CS(m,n) has a Dd -point if m is odd.
The Galois point is given by the projection (x , y) → x or
(x , y) → y .



Example 2 (Lissajous’s curve)

Let us consider the Lissajous curve:
ξ = cos 3θ = 1

2

(
t3 + 1

t3

)
and

η = sin 4θ = 1
2
√
−1

(
t4 − 1

t4

)
.

Putting ξ = Z/X , η = Y/X and t = exp
√
−1θ, we get

−16X 6Z 2 + 80X 4Z 4 − 128X 2Z 6 + 64Z 8 + 9X 6Y 2 − 24X 4Y 4 +
16X 2Y 6 = 0.

This curve is a rational curve with only double points as the
singularities
and (0 : 0 : 1) is an outer Galois point, whose Galois group
G ∼= D8.
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Example 2 (Lissajous’s curve)

Moreover, let φ : P1 ↪→ P8 be
the Veronese mapping of degree eight.
Let (T0,T1, · · · ,T8) be a set of homogeneous coordinates of P8

and φ(s : t) = (s8 : s7t : · · · : t8).
Then take the following hyperplanes Hi (i = 1,2,3):

H1 : T0 + 4T2 + 6T4 + 4T6 + T8 = 0
H2 : T1 − 7T3 + 7T5 − T7 = 0
H3 : T0 − 14T2 + 14T6 − T8 = 0.

Put V = H1 ∩ H2 ∩ H3 and W = H1 ∩ H2.
The linear subspace W is the Galois subspace for φ(P1), i.e.,
the projection with the center W restricts to a Galois covering
φ(P1) −→ P1.
Therefore (0 : 0 : 1) is the Galois point for πV (φ(P1)) = C,
where πV is the projection with the center V .
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Example 3

Let us examine the definition by example. If C is the quartic
Fermat curve x4 + y4 = 1, then we have the following
according to the cases P ∈ C or P /∈ C.

1 In case P ∈ C, we have
1 If P is a flex, then GP ∼= S3 and g(P) = 9. Note that there

are 12 flexes.
2 If P is not a flex, then GP ∼= S3 and g(P) = 10. .

So we see δ(C) = 0
2 In case P /∈ C, we have

1 There are three Galois points
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) ∈ P2 \ C. Hence δ′(C) = 3.

2 There are 12 points satisfying GP ∼= D4.
3 There is no point satisfying GP ∼= A4.

Hence we have GP
∼= S4 except the 15 points.
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Theorem 1

Theorem
For a general point P, the Galois group GP is the full symmetric
group Sd−1 and Sd , corresponding to P ∈ C and P /∈ C
respectively.



Now several questions arise:

1 Find Galois points.
2 Find the distribution of the inner and outer Galois points.
3 Find the Galois group GP at P and the structure of the field

KP .
4 Determine the intermediate fields between k(P1) and KP .
5 Find the characterization of curve with the maximal

number of Galois points.
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Theorem 2

Theorem
If d = 4, then the number of inner Galois points δ(C) = 0, 1 or
4.
The curve with δ(C) = 4 is unique, i.e.,
it is ( projectively equivalent to the curve ) y + x4 + y4 = 0.
On the contrary, if d ≥ 5, then we have that δ(C) = 0 or 1.
For the Galois point P, the group GP is the cyclic group of order
d − 1
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Proof

The reason that the group is cyclic is as follows:
Suppose P ∈ C is an inner Galois point.
Then, σ ∈ GP induces an automorphism of C, since C is
smooth.
Moreover, σ is a restriction of a projective transformation,
because d ≥ 4.
Thus we have an injective representation GP ↪→ PGL(k ,3).
We denote it by the same notation σ.
If ℓ is a line passing through P, then σ(C ∩ ℓ) = C ∩ ℓ.
Taking a suitable coordinates, we can assume that
P = (0 : 0 : 1).
Let aij be the (i , j) component of σ, where 1 ≤ i , j ≤ 3,
then a13 = a23 = 0, since σ(P) = P.
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Moreover we have σ(C ∩ ℓ) = σ ∩ ℓ for any line ℓ passing
through P.
We infer from this that σ is a diagonal matrix with eigenvalues
a, a and b,
where (a/b)n = 1 for some positive integer n.
Thus GP has an injective representation φ in the multiplicative
group of k , i.e., φ : GP ↪→ k∗.
Hence GP is a cyclic group and has an order d − 1.
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Generalization

The above research has been generalized as follows:

1 We can consider the Galois point for positive characteristic
case.
In this case we have many different results.
For some curves there exist an infinitely many Galois
points.
The Galois group is not necessarily cyclic even if C is
smooth.

2 The consideration above is applicable to hypersurface, i.e.,
S is a hypersurface in Pn

3 Similarly we can consider the Galois line for space curve.
4 More generally we should consider Galois embedding of

algebraic variety.
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Example 4

Let us examine the embedding of elliptic curve E associated
with the complete linear system |D| :
(i) deg D = 3 case:

The embedding has a Galois point iff j(E) = 0.
G ∼= Z3, there exists three Galois points.

In other words, let C be a smooth plane cubic.
Assume P ∈ P2 \ C and consider the projection π
with the center P to P1.
Then, π induces a Galois extension k(C)/k(π∗(P1)), or Galois
covering
π|C : C −→ P1 iff P is a Galois point.
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Example 4

The C has a Galois point iff j(C) = 0,
it is projectively equivalent to the Fermat cubic :
X 3 + Y 3 + Z 3 = 0.
There are three outer Galois points: (1 : 0 : 0), (0 : 1 : 0) and
(0 : 0 : 1).
If we use Weierstrass normal form, C is given by
Y 2Z = 4X 3 + Z 3 and
the Galois points are (1;0 : 0), (0 :

√
−3 : 1)

and (0 : −
√
−3 : 1)
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Example 4

(ii) deg D = 4 case:
In this case the embedding has always Galois lines.
fD(E) = C ⊂ P3 has six skew Galois lines
the six lines form a tetrahedron (as in the next page):
and the Galois group G ∼= Z/2Z⊕ Z/2Z
If j(E) = 123, there exist eight Z4-lines in addition.
In this case the arrangement of Galois lines is very

complicated.
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Example 4

In other words, let C be a linearly normal smooth genus-one
curve in
the projective three space P3.
Then C has 6 Galois lines ℓi (i = 1, . . . , 6)
i.e., the projection with the center ℓi to P1

induces a Galois covering C −→ P1

with the Galois group G.
(iii) If deg D = 5, E has no Galois embeddings.
(iv) For any deg D, we can find the possibility of G,

however it is difficult to determine the arrangement of Galois
subspaces.
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